Course Outline

• The Jargon
• Audio/Video System Power Requirements
• Power System Architectures
• Neutral Currents
• Grounding for Safety
 – Earth Connections
 – Equipment Bonding
Course Outline

• Audio/Video Signal Wiring
 – Balanced Wiring
 – Unbalanced Wiring

• Voltage on “Ground”
 – Leakage Currents

• Noise Coupling
 – IR Drop on Shields
 – Pin 1 Problems
 – Magnetic Coupling
 – Capacitive Coupling
Course Outline

• Technical Ground Systems
 – Must Conform to Safety Requirements
 – Minimize Noise
 – Prevent Shield Current

• Shielding and Grounding are Different

• Conduit
 – Protects wiring
 – Shielding
 – Spacing
Course Outline

• Power Quality
 – Regulation
 – Surge Protection
 – Interruptions (Blackouts and “Brownouts”)
 – Power Factor
 – Harmonics
 – Noise
 – Power “Conditioning”
Course Outline

• Power Quality
 – Line Filters
 – Uninterruptible Power Supplies
 – Surge Suppression

• Ground Fault Interrupters

• Grounding for Antennas
Course Outline

• Troubleshooting Tools
 – Outlet Testers
 – Current Probes
 – Magnetic Field Probes
 – Volt-Ohm Meters
 – Scope, Spectrum Analyzer
 – Radio Receiver

• Recommended Reading
Course Outline

• Snake Oil (and Other Bad Medicine)
 – Balanced Power
 – Power Conditioners
 – Special Power Cables
 – Exotic Cables
 – Ground Isolators
 – AC Power Ground Lifts
 – Isolation Transformers
The Jargon

- **Authority Having Jurisdiction (AHJ)** – The local government agency having legal authority for establishing building codes and verifying compliance.

- **National Electric Code (NEC)** – A model electrical code of good practice developed by a consortium of electrical engineers, intended to be adopted by local Authorities Having Jurisdiction.
The Jargon

• *Service, service entrance* – the connection of a building or other facility to the power company’s wiring

• *Separately derived source* – a separate power source that is not directly connected to the power company’s transformer – for example, the secondary of a transformer or the output of a generator
The Jargon

• *Means of disconnection* – Circuit breaker or fuse

• *Branch circuit* – All wiring between the last means of disconnection and the load (outlets)

• *Feeders* – All wiring between the service and the last means of disconnection – in other words, the wiring between the service and various breaker panels
The Jargon

• *Panel* – An electrical enclosure
• *Panelboard* – an electrical enclosure with circuit breakers
The Jargon

• *Equipment* – Materials, fittings, fixtures, appliances, raceway, conduit, apparatus

• *Load Equipment* – Equipment that draws power from the electrical system
The Jargon

- *Grounding Electrode* – The conductor that makes contact with the earth

- *Solidly grounded* – The neutral and earth ground electrodes are directly connected with no impedance intentionally placed between them. Thus, the word solid implies a d.c. connection – i.e., nothing more than a straight wire.
The Jargon

- *Bonding* – The permanent joining of metallic parts to form an electrically conductive path that will insure continuity and the capacity to carry any current likely to be imposed. This definition implies a connection having very high reliability and very low impedance, and that is physically robust. (BIG, SHORT, RUGGED)
The Jargon

• *Bonding jumper* – A reliable conductor used to ensure the required electrical conductivity between metallic parts that are required to be connected

• *Main bonding jumper* – The connection between the grounded circuit (neutral) and equipment grounding bus at the service
The Jargon

• *Phase conductor* – the *ungrounded* (hot) power conductor

• *Neutral* – the *grounded* conductor that carries load current (the white wire)
The Jargon

- **Safety Agency** – An independent testing body, not affiliated with government, whose business is to test the safety of equipment, fittings, and hardware in their intended use. The focus of these agencies is the protection of life and property. They are not concerned with the effectiveness of equipment, except to the extent that it relates to safety.
The Jargon

• Safety agencies test primarily to make sure that a product
 – will not start a fire
 – will not contribute to flame spread
 – will not create noxious fumes if it burns
 – will not create a shock hazard
The Jargon

• *Listed* – Equipment, fittings, and hardware recognized by the Authority Having Jurisdiction as acceptable for use in electrical systems. Most AHJ’s in North America require that all elements of electrical systems (including most audio and video systems) be listed, and delegate responsibility for listing and testing to Underwriters Laboratory (UL), Canadian Safety Agency (CSA), and Electronic Testing Laboratory (ETL).
Equipment Power Requirements

• How Much Power Do We Need?
Equipment Power Requirements

• Small Signal Equipment
 – Mixers, Signal Processing, Switching, etc.
 – Low Power (2-200 watts/box typical)
 – Constant Current (after turn-on)
 – 120 volts, single phase
 – One 20A circuit can often run a 6 ft rack
 • Always ask for 20A circuits – the cost is 95% labor!
 – All of the power heats the rack (and the room)
Equipment Power Requirements

• Large Signal Equipment
 – Power Amps, Video Display, Big Mixers
 – High Power (100 – 4,000 watts)
 – Constant Current (Idle Current)
 – Variable Current (with loudness, brightness)
 – 240VAC for very large amps and projectors
 – Can require one circuit / chassis
 • Always ask for 20A circuits – the cost is 95% labor!
 – Most of the power heats the rack (and room)
Equipment Power Requirements

• Small Signal Equipment
 – Add up the nameplate power or current
 – Current equals (Power) / 120V

• Video Displays, Mix Desks
 – Add up the nameplate power or current
Equipment Power Requirements

• Power Amplifiers
 – Power (and current) varies with audio power
 – (But much less than you think)

• Audio Power
 – Audio is dynamic
 – Average power typically 1/1000 of rated
 – 1/5 of rated when it’s LOUD
Equipment Power Requirements

• Audio Power
 – Audio is dynamic
 – _Average_ power typically 1/500 of rated
 – 1/5 of rated when it’s **LOUD**

• How much AC Power?
 – _Idle_ power 20-50W/ch typical
 – 2X-4X idle power for typical program
 – Rated audio power when it’s **LOUD**
Flavors of Mains Power

• Mains Power Frequency
 – 60 Hz in North America
 – 50 or 60 Hz in Europe

• One conductor is grounded for lightning protection
 – The “grounded conductor” (North America)
 – The “neutral” (Europe and North America)
 – Details of the earth connection vary from one country to another
Flavors of Mains Power

• Single Phase
 – 120V in North America
 – 220V/240V in Europe

• Center-Tapped Single Phase
 – 120V-0-120V in North America
 – 240-0-240V in Europe

• Three Phase
 – 120/208 V in North America
 – 240/415V or 230/400 V in Europe
Single Phase Power (North America)

Line → 120VAC → Neutral
Single Phase Power (Europe)

240VAC

Line

Neutral

240VAC
Single Phase Power (Europe)

Line 1

240VAC

Neutral

240VAC

Line 2

480 VAC
Single Phase Power Waveforms

If currents on Line 1 and Line 2 are equal, neutral current is zero.
Three Phase Wye (North America)
Three Phase Wye (Europe)

- Phase A: 400VAC
- Phase B: 230VAC
- Neutral: 230VAC
- Phase C: 230VAC
Three Phase Power Waveforms
Three Phase Power Waveforms
Three Phase Power Relationships

B = 1

B + A = 1.732

A = 1
Three Phase Power Waveforms
Three Phase Power Waveforms
Three Phase Power Waveforms
Three Phase Delta

No Grounded Conductor, not used for premises wiring
“High Leg” Delta

- A: 120V to Neutral
- B: 208V to Neutral (High Leg)
- C: 120V to Neutral

Voltages:
- 120VAC
- 240VAC
And now, Andy Benton will talk about Power Quality and Power Conditioning!
POWER CONDITIONING
What Is Power Conditioning?

Alternative question:
What are the problems that occur on AC branch circuits?
AC BRANCH CIRCUIT PROBLEMS

For each problem we will look at:

• Characterization of the problem (if needed)
• What causes the problem
• The effect on equipment
• Available solutions
AC BRANCH CIRCUIT PROBLEMS

- Power outages
- Waveform distortion
- Sustained under-voltage
- Sustained over-voltage
- Surges and transients
POWER OUTAGES – CAUSES

• Power company disconnect
 – Varying duration from as short as one cycle

• Local circuit breaker blows
POWER OUTAGES – EFFECTS

• Equipment can no longer operate
• Programmable equipment looses settings and status
• Computer and DSP-based equipment often takes significant time to reboot
POWER OUTAGES – SOLUTIONS

• Generator

• Uninterruptible Power Supply (UPS)

• Inrush current limiting
 (Prevents circuit breaker blowing due to a large inrush at turn-on)
UPS (Battery backup)

- **Off Line**
 - Normally passes AC and switches to battery only when AC drops out
- **Line Interactive**
 - Has limited regulating ability
- **On Line**
 - Continuously generates clean AC
UPS (Battery backup) Waveform

- **Passing AC**
- **On Battery**
Waveform Distortion

- Current flows only at peaks of AC cycle
WAVEFORM DISTORTION

Branch Circuit

Pure Sine Wave
WAVEFORM DISTORTION

Waveforms overlapped
WAVEFORM DISTORTION – CAUSES

• Caused by non-linear loads. What is a “non-linear” load? In the A/V industry, it is usually an electronic power supply that is not power-factor corrected, and which draws current only during the AC peaks. The result is that the peaks get flattened.
WAVEFORM DISTORTION – CAUSES

QSC RMX850
AC Current Draw

Running at:
1KHz In
100W Out

4.4A RMS
9.1A Peak
WAVEFORM DISTORTION – EFFECTS

• Hurts voltage regulation
 – #12 gauge wire reacts more like #14 gauge
• Increases distribution losses (I^2R losses)
• Amplifiers do not quite have full headroom because the peak voltage is lower
• Increased harmonic content increases noise
WAVEFORM DISTORTION – SOLUTIONS

• Use heavier gauge of copper wire

• On Line UPS or Regulator
 – But, is the regulation and peak current handling capability any better than the branch circuit?

• Beware! Some products claim to reconstruct the AC sine wave but they don’t
Inrush Current

• The capacitor must charge at turn-on

• Largest spike at peak of cycle
• Smallest surge at zero crossing
INRUSH CURRENT LIMITING

Without Limiting

50A/Div

With Limiting
UNDER-VOLTAGE CONDITION

- A sustained condition where the RMS voltage of a branch circuit is much lower than 120V
- Most equipment will function perfectly well down to 105V
OVER-VOLTAGE CONDITION

• A sustained condition where the RMS voltage of a branch circuit is much higher than 120V
• Most equipment will function satisfactorily up to 135V with damage not occurring until around 150V
UNDER- & OVER-VOLTAGE – CAUSES

• Power company fault
• Complete or partial loss of neutral on a three-phase or split-phase service
 – This unbalances the phases
UNDER-VOLTAGE – EFFECTS

• Depending on actual voltage, equipment may:
 • Stop working entirely
 • Behave erratically
 • Hang up or freeze (microprocessor based)
 • Loose programming or settings
OVER-VOLTAGE – EFFECTS

- Depending on actual voltage equipment may:
 - Overheat
 - Malfunction
 - Fail Destructively (Blow up)
UNDER- & OVER-VOLTAGE – SOLUTIONS

• Regulator (limited input voltage range from about 90V to 145V)
• Shut down the power to the equipment
 – Shutdown slowly for under-voltage
 – Shutdown within ½ cycle for over-voltage
• Convenience feature:
 – Many products stay off until manually reset
 – Some products automatically turn back on
SURGES & TRANSIENTS

• Surges and transients are very short duration over-voltage events typically lasting from a few micro-seconds to a thousandth of a second – much shorter than ½ cycle of 60Hz AC.

• Surges contain more energy than transients.
SURGE ENERGY

• IEEE 62.41 states for a branch circuit:
 • Maximum voltage is 6000V
 • Maximum current is 3000A
 • Maximum energy is 90 Joules

• Does this sound like it can do damage?
A 20 microsecond, 90 Joule surge (as defined by IEEE 62.41) has a peak power of…

4.5 Megawatts!!!
SURGES & TRANSIENTS – CAUSES

• Direct lightning strike
 – Typical 20,000 Amps; Maximum 200,000 Amps
• Induced lightning
 – Intense electromagnetic fields induce voltages on building wiring and A/V cables
• HVAC turning off & on
• Power company switching
DIRECT LIGHTNING

Lightning hits the service outside the building

Some arc-over occurs around and inside the breaker panel

Residual surge energy rides on Live wire

Neutral and Ground are bonded to the ground rod hence almost no surge energy passes through to these wires

Lightning Strike Hits Electrical Service
INDUCED LIGHTNING

Induced Voltage from a Lightning Strike

Induced Voltage

Distance from Strike (Feet)
SURGES & TRANSIENTS – EFFECTS

• Catastrophic damage to equipment
• Degradation of semiconductors resulting in overheating and eventual failure
• Loss of setup information or status
• Equipment crashes or freezes
• Interruption of session or performance
• Clicks or pops in audio
SURGES & TRANSIENTS – SOLUTIONS

• Shunt current to neutral and/or ground
 – Voltage clamp (Diversion technology)

• Block and contain energy
 – Series Mode®

Series Mode® and SurgeX® are registered trademarks of Electronic Systems Protection, Inc.
SHUNT MODE (VOLTAGE CLAMP) – Diversion Technology

• All modes (L-N-G)
 – Contaminates ground if used on a branch circuit

• Normal mode (L-N)
 – Does not contaminate ground but generates common-mode surges on a branch circuit

• Hybrid (L-N)
 – Does not contaminate ground but generates common-mode surges on a branch circuit
SHUNT MODE SURGE PROTECTION – All Modes

Traditional Shunt Mode Protection Using MOVs
SHUNT MODE SURGE PROTECTION
– Normal Mode

Shunt Mode Protection Using MOVs
Only Between Live & Neutral
SHUNT MODE SURGE PROTECTION
– Hybrid

MOV(s) clamp voltage to around 400V (99% of the surge energy)
Capacitor clamp lowers voltage between L & N but not L & G
SHUNT MODE SURGE PROTECTION – Limitations of Use

- Can only effectively divert surges to ground when connected at the service entrance
- Depending on mode (all modes or normal mode) either contaminates ground or produces common-mode surges
- Reliability (limited lifetime)
- Leakage to ground
- Unable to withstand over-voltage conditions
 - MOVs conduct a large current and burn up
SHUNT MODE SURGE PROTECTION – Applications

Review of Lightning Striking Electrical Service

Lightning hits the service outside the building

Some arc-over occurs around and inside the breaker panel

Residual surge energy rides on Live wire

Electrical Service

Live

Neutral

Ground

Neutral and Ground are bonded to the ground rod hence almost no surge energy passes through to these wires
SHUNT MODE SURGE PROTECTION
– Use At The Service Entrance

Shunt Mode Protection Using MOVs At Service Entrance

Lightning hits the electrical service

These MOVs shunt current to the ground rod

This MOV does nothing

Ground and Neutral bonded to ground rod
SHUNT MODE SURGE PROTECTION
– Use On A Branch Circuit

Lightning travels along the Live wire

IEEE 6000V, 3000A
90 Joules

Wire has considerable impedance (Z) at higher frequencies where surges occur

MOVs divert current to Ground wire producing ground contamination

Ohms Law: $V = lZ$
If $Z = 1$ Ohm and current is 1000 Amps, then Voltage is 1000 Volts

All-Modes Shunt Mode Protection On A Branch Circuit
GROUND CONTAMINATION – Why it is a problem (Equipment)

Lightning travels along the Live wire

If $Z = 1$ Ohm and current is 1000 Amps, then Voltage is 1000 Volts

Multiple Paths To Ground Caused By Ground Contamination
GROUND CONTAMINATION – Why it is a problem (Personnel)

Lightning travels along the Live wire

If $Z=1$ Ohm and current is 1000 Amps, then Voltage is 1000 Volts

MOVs divert current to Ground wire producing ground contamination

Multiple Paths To Ground Caused By Ground Contamination
SHUNT MODE SURGE PROTECTION
– Use On A Branch Circuit

Lightning travels along the Live wire

IEEE 6000V, 3000A
90 Joules

MOV diverts current to Neutral wire producing common-mode surges

Ohms Law: $V = IZ$
If $Z = 1$ Ohm and current is 1000 Amps, then Voltage is 1000 Volts

Normal-Mode Shunt Mode Protection On A Branch Circuit
SHUNT MODE SURGE PROTECTION
– Common-mode surge voltage

250V/Division
4000V Surge
20’ long wiring
700V peak L-G
SHUNT MODE SURGE PROTECTION – Lifetime

Endurance for a 20mm MOV

- Axis: Current [A] vs. Pulse Duration [us]
- Graph showing endurance for different pulse durations and current levels (1 Time, 2 Times, 10 Times, 100 Times, 1000 Times)
SERIES MODE® SURGE PROTECTION

Series Mode Technology Blocks And Contains Surge Energy

Lightning hits the electrical service

Live

6000 Volt capable air-cored surge reactor

Blocks and dissipates high-frequency energy

Energy storage and dissipation

Neutral

Ground

Series Mode Technology Blocks And Contains Surge Energy
SERIES MODE® SURGE PROTECTION – Characteristics

• Reliably handles worst-case surges
• Filters smaller transients and noise
• Lowest let-through voltage
• Does not contaminate Ground
• Does not produce common-mode surges
• Does not need an ideal ground path
• Safe for use on branch circuits and networks
ADVANCED SERIES MODE

Advanced Series Mode Technology Completely Eliminates Surges

Lightning hits the electrical service
ADVANCED SERIES MODE

6000V Air-cored Surge Reactor

Normal Mode and Common-Mode Filtering

Energy Storage and Filtering
ADVANCED SERIES MODE

6000V Surge is applied

Disturbance is kept within the powerwave
The Harmonic Problem
Remember This Circuit?

If currents on Line 1, Line 2, and Line 3 are equal, neutral current is zero.
There’s a Big Problem with it!

If currents on Line 1, Line 2, and Line 3 are equal, neutral current is zero.
Waveform Distortion

- Current flows only at peaks of AC cycle
WAVEFORM DISTORTION – CAUSES

QSC
RMX850
AC Current
Draw
Running at:
1KHz In
100W Out
4.4A RMS
9.1A Peak

VOLTAGE

CURRENT
The Harmonic Problem

• Nearly all electronic loads have power supplies with capacitor-input filters so:

• Load current is drawn in short pulses at peaks of the input sine wave thus:

• Phase and neutral currents are highly distorted
The Harmonic Problem

• Remember this power supply?

Something like it is in **every** piece of electronic gear – audio, video, computers, printers, copiers (even switching power supplies)
It Also Causes the Harmonic Problem

- The capacitor recharges at the peak of each cycle

- AC current is not even close to a sine wave
- Lots of harmonics of 60 Hz
The Harmonic Problem
One Problem Occurs On the Neutral

- Fundamental cancels
- Most harmonics cancel
- Triplen harmonics ADD!
 - Third, sixth, ninth, etc

- And they also add on the Ground!
Fundamentals and Third Harmonics
Three Phase Power Waveforms
3rd Harmonic on Neutral
(Phasors rotate 3 times as fast as fundamental, so they all line up)
25% 3rd Harmonic on the Phases becomes 75% 3rd Harmonic on Neutral
What Happens in the Neutral?

- Triplen harmonics ADD!
 - Third, sixth, ninth, etc
- Neutral current can be 1.7X the phase currents, even in a perfectly balanced system!
- Potentially dangerous overheating
 - Phase conductors (and contacts)
 - Transformers
- Use bigger copper in neutrals
- Use *K-rated* transformers
Problems With Pulse Currents

- Because current flows in short pulses, the IR drop at the peak of the current waveform can be much greater than for a sine wave
 - Greater I^2R losses
 - Voltage waveform is distorted
 - Lower voltage delivered to equipment
 - Increased heating in phase and neutral conductors
 - Increased heating in transformers
K-Factor

- Describes heating effects of harmonics in iron cores of motors, transformers, etc.

- \(K = \sum h^2 (I_h)^2 \) where \(I_h \) is fraction of total current in each harmonic.

- \(K = (I_1)^2 + 4 (I_2)^2 + 9 (I_3)^2 + 16 (I_4)^2 + 25 (I_5)^2 + 36 (I_6)^2 + 49 (I_7)^2 + 64 (I_8)^2 + 81 (I_9)^2 + 100 (I_{10})^2 + 121 (I_{11})^2 + 144 (I_{12})^2 \cdots \)
K-Factor

• Typical Values
 – 12 – 20 for electronic components
 – 3-6 for entire systems
 – Some cancellation occurs when many components are summed

• K-rated transformers and other components are designed to handle the harmonics

• Oversize the neutral by 2:1
 – Use double-size conductors (3 wire gauges)
 – switches and other hardware should be rated for twice the current
Why Three-Phase Power?

• Power is generated by rotating machines that produce 3-phase power
• Pure sine waves cancel in the neutral if the phases are balanced
• Big motors run far more efficiently on 3-phase power
• **None of this helps audio and video systems!**
Which power configuration is best for Audio and Video Systems?
Single Phase Power (North America) (Sometimes called “Split” Single Phase)
Split Single-Phase Power

- No harmonic problems in the neutral
 - Better cancellation of neutral current
 - Less noise coupled to audio and video systems

- Audio and video systems don’t use a lot of power, so a split single phase system can easily supply **enough** power

- Audio and video systems don’t use big motors, so 3-phase is not “better”
Split Single-Phase Power

• Double the voltage is available by using both sides of the center-tapped feed
 – Good for high power video projectors