Power and Grounding for Audio and Video Systems Part 2

Jim Brown Andy Benton

Power Grounding

- Grounding- An electrical connection to earth
- <u>System Grounding</u> the bonding to earth of a conductor that normally carries current the neutral or grounded conductor
- <u>Equipment Grounding</u> the bonding together of all exposed equipment that could be energized (due to an equipment fault)
- <u>Technical Grounding</u> the scheme for bonding between the <u>equipment grounding</u> of technical equipment to minimize hum, buzz, and RFI

Why an **Earth** Connection?

- Low impedance discharge path for lightning
 - Energy in lightning extends well into MHz range, with a broad peak around 1 MHz
- Safety of personnel in outdoor systems
- A return path for a Faraday shield in power isolation transformers

Earth Connections and Noise

- The impedance of the connection to earth has very little to do with noise in audio systems!
- Ground rods are for <u>lightning safety!</u>
- Earth provides the fault path for the power company's service.

Earth Bonding

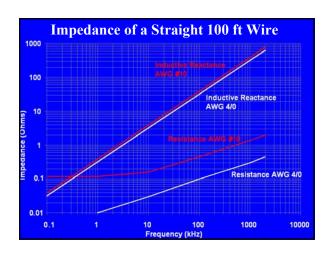
- Short (low inductance) is critical here
- Made electrodes should be bonded together outside the building

Some Lightning Realities

- <u>Very</u> high voltages creates very large currents with very short rise time
- Large currents create large voltage drops
 - Heat can even vaporize a conductor
 - If impedance is high enough, voltage will arc over (insulators break down) and find an unintended path to earth

For Lightning Protection

- Give it the shortest possible path to earth
- Avoid sharp bends (likely to arc across the bend or to another path)


Does Impedance to Earth Matter?

- The impedance of the connection to earth affects
 - -Lightning safety
 - Noise filtering by Faraday shields in a power isolation transformer

Making the Earth Connection

• Low Impedance Path

- At nearly all frequencies, <u>inductance</u> dominates the impedance
- Big copper simply allows greater dissipation of heat before it vaporizes

Making the Earth Connection

- Short is far more important than big!
- Wide flat conductors reduce inductance
- Add multiple connections in parallel by bonding to building structure
 - Building structure is bonded to earth at multiple points
 - Building structure provides multiple paths in parallel
 - Reduces impedance of the earth connection

Bonding Conductors in Conduit

- By virtue of its permeability, steel conduit significantly increases the inductance of a conductor within it
- The inductance will be reduced to that of the conduit alone if the grounding conductor is bonded to the conduit at both ends, and at all connecting points.
- The conduit is a second conductor in parallel, so reduces the impedance too.

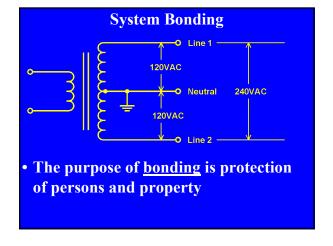
Ground Electrode Systems

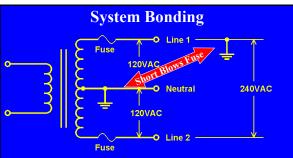
- Earth conductivity
- To lower the impedance
 - Increase earth conductivity
 - Increase surface area in contact
 - Add electrodes in parallel
 - Increase spacing between electrodes
 - Mutual inductance between parallel electrodes increases impedance
 - Try for spacing > length of rod

Increasing Soil Conductivity

- Keep the electrode system moist
 - Outside footprint of building
 - Outside footprint of pavement
- Chemicals are a bad idea
 - Must be regularly maintained to be effective over the long haul
- No limit on the <u>number</u> of ground electrodes, <u>but</u> they must all be bonded together

Lightning Protection Systems


- Cannot be relied on for grounding of power systems (per NEC)
- Must be bonded to power system ground


All Ground Electrodes Must be Bonded Together

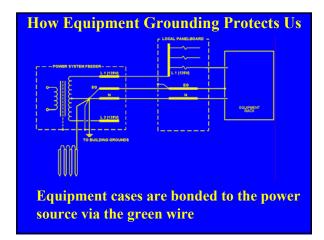
- Water pipes
- Building steel
- Gas pipe
- Made electrodes
 - Driven rods
 - Metal plates
 - Ground rings
 - Ufers
- Lightning system grounds

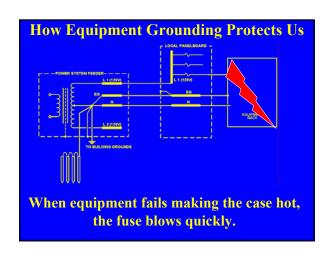
Ufers – Concrete Encased Electrodes Increases surface area in contact with earth Concrete can explode with a strike, so use of structural concrete can be a problem TRENCH END VIEW POUR IN GROUNDCEMENT

Developed by (Herbert G. Ufer) for US Army after WW II

 The purpose of <u>bonding</u> is protection of persons and property

System Bonding


- Each power <u>system</u> having a grounded conductor must be bonded once, and <u>only</u> once, at the point where the <u>system</u> is established
 - -Note: some industrial systems are not required to be grounded
- The purpose of <u>bonding</u> is protection of persons and property


System Bonding

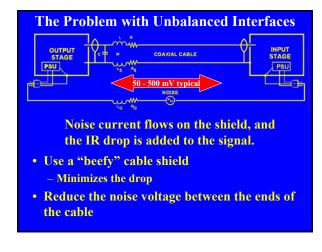
- A system is established
 - Where a service enters a building
 - By a distribution transformer within a building
 - By a motor generator
 - By a UPS, when it is running
- · A building may have several systems
- In general, the bond must be very close to the point where the system is established.
 - A short bond having a low impedance path to earth tends to minimize noise on a <u>power</u> system
 - Building steel is generally a good bonding point because it typically provides many parallel paths to earth, thus reducing the total inductance

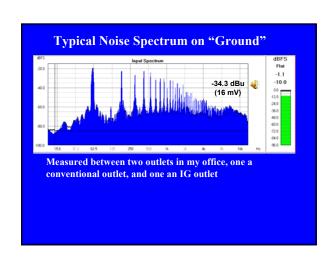
What Must Be Bonded

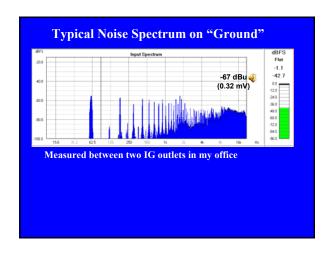
- In general, every piece of exposed metal that might be energized must be bonded
 - Energized means "come in contact with a power conductor"

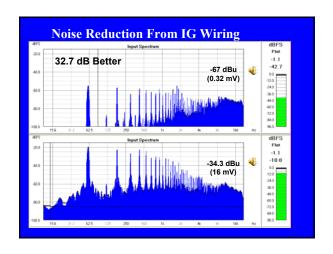
Why Technical Grounding?

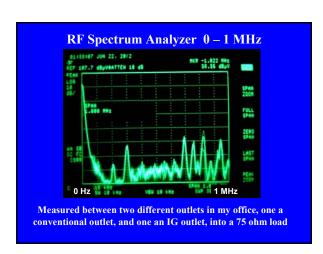
Technical Grounding


- The primary purpose of technical grounding is to minimize the flow of power-related noise currents on the shields of signal wiring, while also providing the equipment grounding required for safety
- Technical grounding should also provide a suitable reference for cable and equipment shields at radio frequencies


Primary Coupling Mechanisms


- IR drop on shields of unbalanced signal wiring
- Pin 1 problems
 - Improper shield termination within equipment
- Differential noise on signal pair
 - <u>Inductive</u> imbalance between shield and signal conductors -- Shield-current-induced noise (SCIN)
 - Capacitance imbalance of cable
 - Inadequate low-pass filtering lets it in the box
- Common mode noise
- Inadequate shielding of internal wiring


Unbalanced Signal Wiring


- All video
- RS-232 interfaces
- Cheap audio equipment
- Control wiring

For Unbalanced interconnections, shield resistance can be important!

- Shield current (noise) creates IR drop that is added to the signal
- $E_{NOISE} = 20 \log (I_{SHIELD} * R_{SHIELD})$
- Coaxial cables differ widely
 - Heavy copper braid (8241F) 2.6 Ω /1000 ft
 - Double copper braid (8281) 1.1 Ω /1000 ft
 - Foil/drain shield #22 gauge $16 \Omega / 1000$ ft
- Audio dynamic range 100 dB
 - For 1 volt signal, 10 μV noise floor

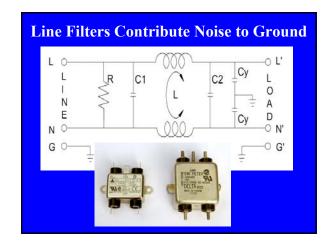
A Calculated Example

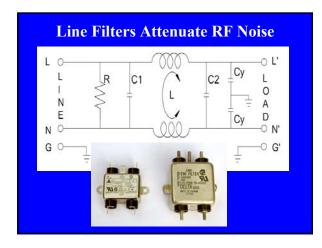
- 25-foot cable, foil shield and #26 AWG drain with resistance of 1 S
- Leakage current between two pieces of equipment is measured at 1 mA
- From Ohm's law, noise voltage = 1 mV
- Consumer reference level = 316 mV
- Signal to noise ratio = 316 mV ÷ 1 mV = 316:1 = 50 dB = pretty bad!
- Belden #8241F cable, shield resistance of 0.065 S, would reduce noise ≈ 24 dB!

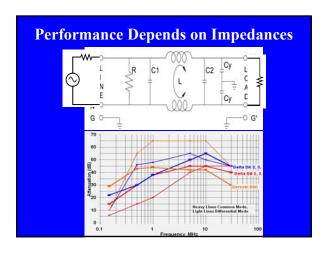
Noise on "Ground" from Power

- Leakage currents to green wire
 - Power transformer stray capacitances
- Intentional currents to green wire
- Line filter capacitors
- Power wiring faults
- Shunt mode surge suppressors
- Magnetic coupling from mains power
 - Harmonic current in neutral
 - Motors, transformers

Leakage Current to Green Wire


- Capacitance from phase ("hot") to equipment ground (green wire)
- $I = E/X_C = 120/X_C$
- $X_C = 1/(2\pi f C)$
- Maximum permitted leakage current is 5 mA with 110% of rated line voltage
- $X_C = E/I = 1.1 \times 120/.005 = 26.4 \text{ k}\Omega$
- $C = 1/(2\pi f X_C) = 0.1 \,\mu F$ is the largest capacitance that can exist from line to ground within equipment

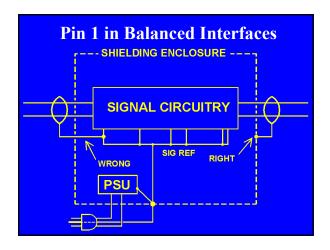

Leakage Current to Green Wire

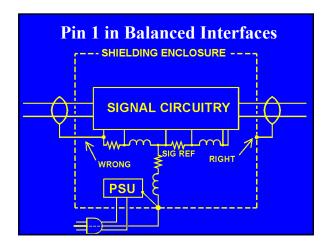

- 0.1 μF is the largest capacitance that is permitted from line to ground within equipment
 - This <u>includes</u> stray capacitance within the power transformer
- We often have many pieces of equipment connected to the same branch circuit
 - All capacitances (and leakage currents) are in parallel, so they <u>add</u>
 - More noise

Triplen Harmonics and Leakage

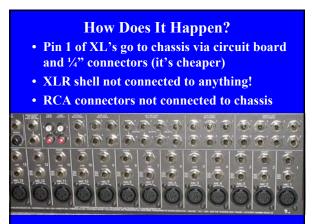
- 3-phase equipment has stray capacitance to ground too
- Triplen harmonics contribute to leakage current, and ADD, just like in the neutral!
 - Third, sixth, ninth, etc
- Adds to noise current on cable shields
- Fundamental (50/60 Hz) and low harmonics (150/180 Hz, 450/540 Hz) are perceived as "hum"
- Higher harmonics are heard as "buzz"

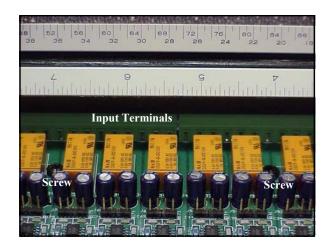
Ground Fault Circuit Interrupter

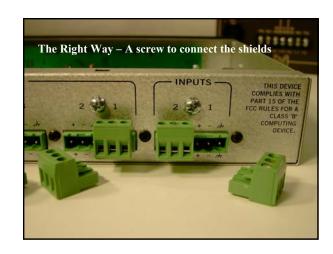

- Senses imbalance between phase (hot) and neutral current
- Difference is flowing to ground
- Interrupts circuit if > 4-6 mA
- Required in locations where shock hazard more likely (outdoors, around plumbing)

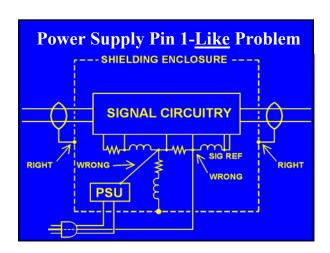

Pin 1 in Cable-Mounted Connectors

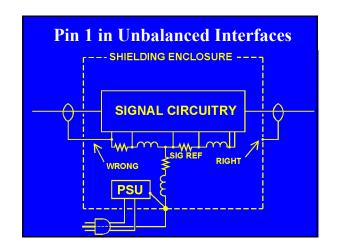
- Pin 1 is the shield contact of XL connectors (AES14-1992)
- No connection should be made to the shell of <u>cable-mounted</u> connectors


Pin 1 Within Equipment

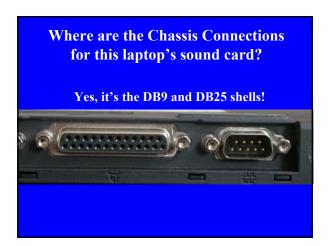

- Pin 1 is the shield contact of XL connectors
- Cable shields must go to the shielding enclosure (and ONLY to the shielding enclosure) (AES48)
- If shields go inside the box (to the circuit board, for example), common impedances couple shield current at random points along the circuit board!
- Noise is added to the signal

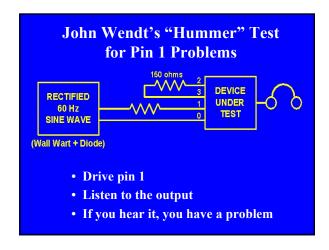






Power Supply Pin 1-Like Problems

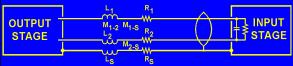

- It buzzes when I turn it on, and there are no signal wires plugged in
- Power line leakage current flows through circuit common
 - Stray capacitance in power transformer
 - Line filter capacitors
- Power supply filter capacitor returns via signal common bus


Where are the Chassis Connections for this laptop's sound card?

- Hint: It isn't an audio connector shell!
 - That metal is a shield, but not connected to connectors
 - And the cover is plastic too

Testing for Pin 1 Problems

Cable construction is part of the problem!


- No cable is perfect
 - Inductive imbalance (SCIN)
 - Capacitive imbalance
 - Imperfect shielding (tiny openings in braid)
- Even small imperfections become more important at higher frequencies
 - No effect on audio
 - BIG effect on RFI

The drain wire is coupled more closely to the white conductor

So shield current induces more voltage on white than violet

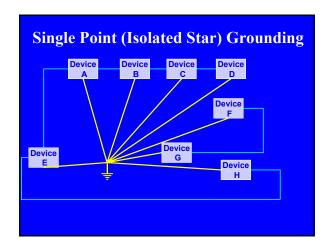
Inductive Imbalance

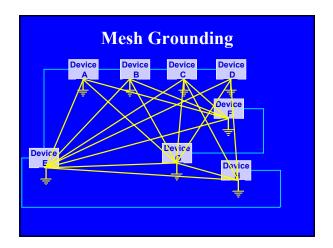
- Below about 5 MHz, most shield current in a foil/drain shield flows in the drain wire
- As a result of cable construction, the drain wire couples more closely to one signal conductor than the other

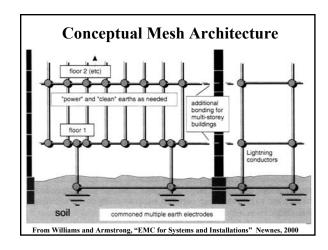
Primary Coupling Mechanisms

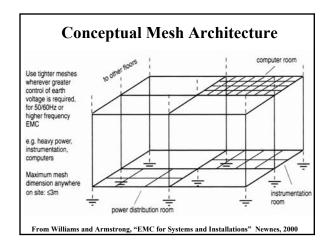
- IR drop couples *shield current* in unbalanced interfaces
- Pin 1 problems couples *shield current* in balanced and unbalanced interfaces
- Cable imbalance couples *shield current* to a balanced signal pair
- Minimizing shield current is a key to preventing this noise!

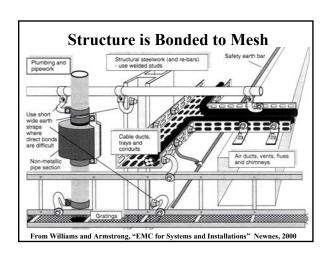
Technical Grounding


- The primary purpose of technical grounding is to minimize the flow of power-related noise currents on the shields of signal wiring, while also providing the <u>equipment</u> grounding required for safety
- Technical grounding should also provide a suitable reference for cable and equipment shields at radio frequencies


Technical Grounding


- <u>Isolated Star (Single point)</u> The technical system is bonded to system ground <u>only</u> at a single point; equipment is isolated from random contact with ground, and bonded to the breaker panel via a dedicated conductor run with the power conductors
- Mesh (Multipoint) a well controlled grid or mesh is established, all building elements and all technical equipment are bonded to it at every possible point
- Random Use what the power system gives you


Technical Grounding


- <u>Single point grounding</u> usually provides the greatest noise immunity at <u>low</u> frequencies (below 3 MHz)
- <u>Mesh (multipoint) grounding</u> usually provides the greatest immunity at <u>high</u> frequencies
- <u>Hybrid grounding</u> provides both cable shields have dc connection at one end, capacitive connection at other end
 - Shield current flows at RF, but not at AF
 - Common mode voltage minimized at inputs

Single Point Grounding

- Since the technical system has only one connection to other grounds, low frequency current on its ground conductors is limited to:
 - its own leakage currents
 - magnetic induction on loops that include its ground conductors

Single Point Grounding

- Generally far superior for audio systems
- Much less costly than a proper mesh, especially for a retrofit
- Keeps low frequency ground currents away from technical systems
- Principal costs are:
 - Isolated ground outlets
 - Isolated ground conductor to each outlet
 - Isolated mounting of equipment racks, video projectors, wireless mic antennas, etc.

Mesh Grounding

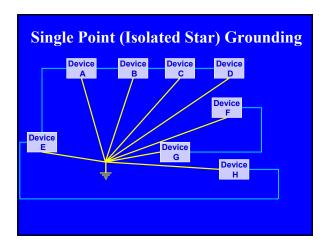
- Since the technical system has many connection to other grounds, low frequency currents on ground conductors divide between many parallel paths, so IR drops are much smaller
- All cables are run in close proximity to grounded structures along their entire length, so induced currents tend to be diverted to those grounded structures

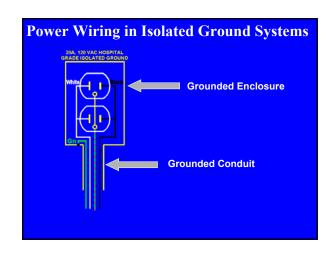
Mesh Grounding

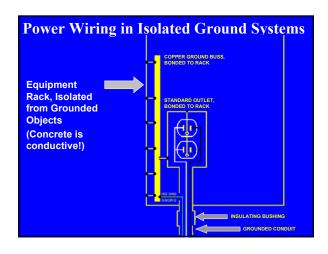
- A good choice for video studios
 - Many copper braid shields
 - Many parallel paths to divide current
 - Video cables have low shield resistance
 - Only one or two audio and video signals are "on the air" at one time, so little coherent addition
- Coherent addition can occur:
 - If there are pin 1 problems (audio or video)
 - If the studio does live production with many live mics and analog distribution at mic level

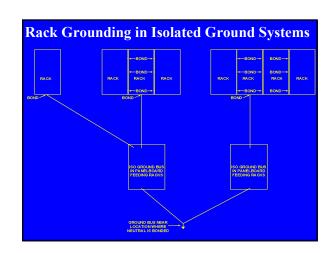
Mesh Grounding

- A good choice for facilities that handle only digital signals and data
 - No low frequency components of signal, so low frequency noise is easily rejected if system bandwidth is properly limited
- A poor choice for most audio systems and small video systems
 - Baseband noise appears on cable shields and cannot be removed by filtering


Mesh Grounding


- Mesh grounding is expensive to do properly
 - All structure and conductive elements must be bonded to it
 - Retrofitting impractical
 - A very close-spaced mesh is required for good performance above HF
- While power-related ground currents divide between multiple paths, those currents can be <u>very</u> large, so ground potentials can still be problematic


Isolated Ground Systems


Isolated Ground Systems

- All system elements isolated from ground
 - Racks
 - Interconnecting cables
 - Antennas
 - Cameras
 - Projectors
 - Microphones
- All equipment enclosures bonded to a single grounded point (the "star point")

Signal Wiring

- Isolated Ground Systems
- Mesh Ground Systems

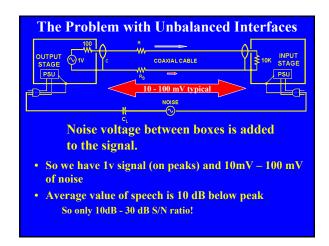
Balanced <u>Line Level</u> Wiring in Isolated Ground Systems

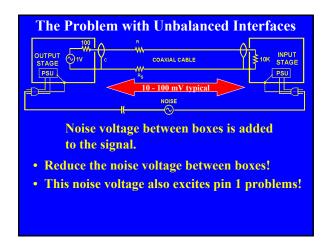
- Cable shields bonded only to <u>equipment</u> enclosure at either end
 - Always bond shield at sending end
 - At receiving end, bond <u>may</u> be omitted, or may be made through a capacitor (hybrid grounding)

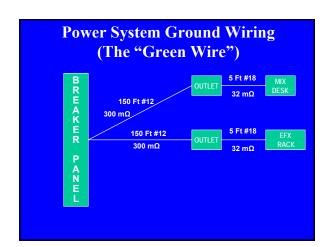
Balanced <u>Microphone Level</u> Wiring in Isolated Ground Systems

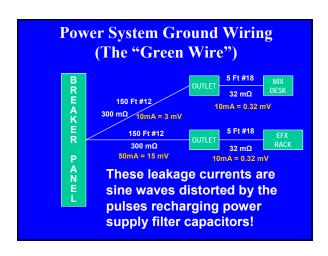
- Cable shields bonded only to <u>equipment</u> enclosure at both ends
 - Shield continuity required for phantom power

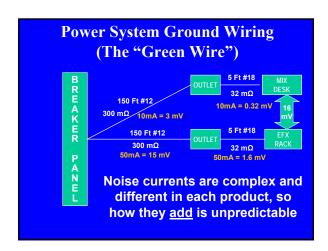
Wiring Panels in Isolated Ground Systems

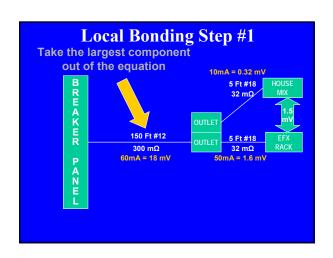

- <u>Isolate</u> cable shields from wiring panels
 - Wiring panels should be bonded to building structure via the conduit system
 - A connection to building structure would violate the isolation
 - Use plastic body connectors, insulating spacers
 - Use insulating feedthru connectors for RF, video
- Cable shields <u>may</u> be connected to building structure with a capacitor (hybrid grounding)
 - Almost never a good reason for doing this

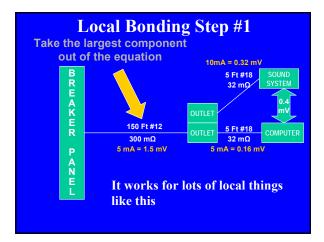

Equipment in Isolated Ground Systems

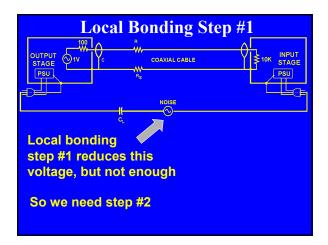

- Isolate equipment from building structure
 - Racks
 - Mixing Equipment
 - Projectors
 - Cameras
 - Antennas
- Use Isolated Ground Power for all equipment
 - Equipment properly grounded by IG wiring

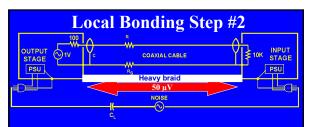

Local Bonding


- Reduces Noise Between Equipment
 - -Reduces Noise on Unbalanced Wiring
 - **Less Current to Excite Pin 1 Problems**
- Can improve all types of technical ground systems



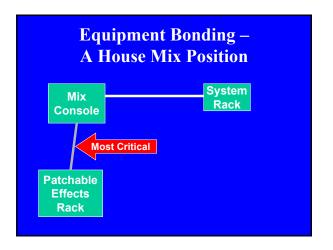



Local Bonding Step #1


- This reduces the voltage between outlets to a few microvolts
- What's left are the IR drops on line cords within your racks and mix position
- Step #1 is typically good for 20 dB

Local Bonding Step #1

- Put all power outlets for the mix position in portable quad boxes that are bonded together
 - A 20A circuit can run almost any mix position
 - If you need more outlets, bolt multiple quad boxes together



- Short out the remaining noise (or reduce IR drop) by adding a BIG conductor between the equipment enclosures
- 50μV would yield 76 dB S/R ratio
- 5µV would vield 96 dB S/R ratio

Local Bonding Step #2

- Bond all interconnected equipment together with heavy copper braid
- In our Mix Position example
- Mix Desk to Signal Processing
- Signal Processing to Signal Processing
- Mix Desk to Equipment Patched to Inserts

Guidelines For Local Bonding

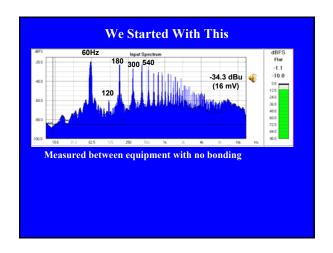
- Add bonding in parallel with every unbalanced audio path
- Bonding should be #6 copper or larger
 - Buy braid from ham radio vendors
 - Copper braid stripped from <u>transmitting</u> coax (RG8, RG11, RG213, RG214) is #10 AWG
 - Multiple #10 THHN stranded conductors are OK, but stiffer
- Bond to chassis of equipment
 - Retaining screw of D-connector on laptops

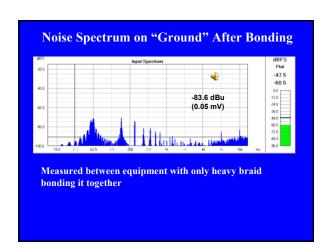
Guidelines For Local Bonding

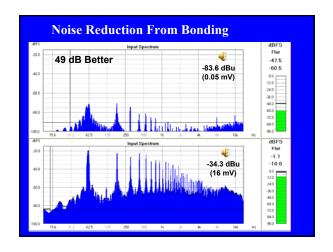
- Noise reduction = $20 \log (R_2/R_1)$
- -6 dB for cutting resistance in half!
 - Double the conductor size = -6 dB
 - Half the length = -6 dB
- Think BIG and SHORT!
- Take advantage of conductive racks

Bonding Equipment

- Take advantage of the racks
- Bond equipment to bare steel rack rails
- Steel is plenty good enough <u>IF</u> it is bonded together and <u>IF</u> equipment makes good contact with it
- Paint will defeat bonding!
 - At equipment mounting screws
 - Rack assembly screws
- If in doubt, add SHORT copper braid from chassis to chassis


When There's No Metal to Bond To


- Power that unit from a good DC power supply and bond the chassis of the supply
- Bond to a D-connector retaining screw


Local Bonding Only Works Locally

- Bonding must have very low resistance
 - That means very **short** bonding conductors!
 - +6dB noise for doubling of length
- 10 ft is a practical limit for #6 conductors
- Use proportionally larger conductors for longer runs
 - #3 for 20 ft
 - #0 for 40 ft
 - Or use multiple conductors in parallel

How Well Does This Work?

A Portable Isolated Ground System

- Put all power outlets for the mix position in portable quad boxes that are bonded together
 - A 20A circuit can run almost any mix position
 - Get that circuit from the amp rack!
 - If you need more outlets, bolt multiple quad boxes together
 - Do not bond these to ground locally
 - This ground for the mix position is the ground carried from the amp rack!

A Portable Isolated Ground System

- Put all power amps in racks that are bonded together
- Get all the power for your system from outlets connected to the same "green wire"
- Feed power from the amp racks to the house mix (and the monitor mix)
- Isolate the rack from ground (the building)
- Bond the rack(s) to ground using the power system green wire(s)

Shielding and Grounding

- Shielding and grounding are often confused
- This class is not really about shielding, but we'll talk about it a bit as a BONUS!

Fields and Shielding

- When there are no wires in common between the noise source and the victim system, noise coupling can occur by means of a *field*.
- Coupling by fields can be just as strong as (or stronger than) coupling by a direct connection

Fields

- Magnetic field
 - Surrounds a wire carrying current
- Electric field
 - Force (voltage) between two charged conductors
- Electromagnetic field (radio wave)
 - Combination of magnetic and electric fields at right angles to each other
- Virtually all power-related fields are magnetic

Magnetic Field

- Produced by current flowing in a wire
 - Could be part of a motor, a transformer, or just wiring that makes up a power system
 - Strength proportional to current
 - Strength proportional to loop area
- Change in field induces voltage in a wire passing through the field (inductive coupling)
 - Current will flow in that wire if there is a complete circuit
 - Strength proportional to loop area
 - Strength falls off with distance

Reducing Magnetic Field Interference

- Minimize the loop area (both source and victim)
- Increased distance between source and victim
- Use balanced wiring with twisted pairs
 - Source or victim or both (additive)
- Use coax with <u>beefy</u> copper shield if you must run unbalanced
- Shield with a magnetic material (steel, mumetal)
- Cable shields provide no magnetic shielding

Electric Field

- Produced by voltage between two conductors
 - Mostly confined to the space between them
- Induces voltage onto a conductor in or near that space (capacitive coupling)

Electromagnetic Field

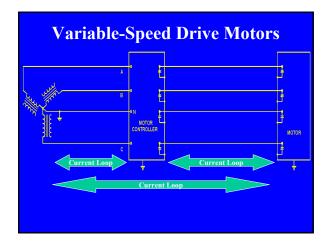
- Produced by antennas carrying RF current
 - Travels through space
 - Follows inverse square law
- Coupled to our wiring by antenna action
 - That is, our wiring acts as a receiving antenna

Reducing Electric and Electromagnetic Field Interference

- Increase the distance between source and victim
- Use balanced wiring with twisted pairs
- Use coaxial cable with high % coverage shield
- Shield the equipment and the wiring
 - Cable shields DO work on Electric and Electromagnetic fields

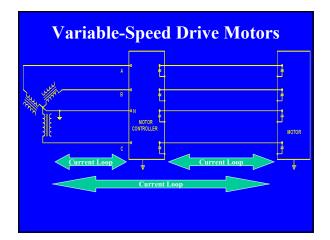
Magnetic Field Noise Sources

- Conductors carrying large currents
 - Power system feeders
 - Lighting system wiring
- **Transformers**
- Motors
- Especially variable speed drive motors
 - HVAC systems
 - Elevators
 - Geothermal systems


A Double-Bonded Neutral Creates An Interfering Magnetic Field

Fields with Single-Bonded Neutral Field only Load Field mostly confined to the very small area between conductors – that is, within the conduit

Fields with Double-Bonded Neutral Load Field is much stronger and spreads out over much more area! • Fields may engulf large areas of a building!


Magnetic Fields "On the Loose"

- Couple noise currents onto any conductors within the field
 - Audio cables
 - Video cables
 - Control cables
 - Computer interface cables
 - Single coil guitar pickups
 - Dynamic mics without hum-bucking coils

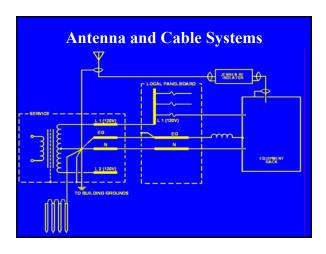
Variable Speed Drive Motors

- Operates by chopping DC into a variable width pulse
 - 10-20 kHz typical switching frequencies
 - Harmonics extend to hundreds of kHz
- Stray capacitance (and filter capacitors) between motor and earth causes very large currents to flow on earthed structure
 - Establishes a very large current loop
- Controllers often widely separated from motors to make installation easier

Variable Speed Drive Motor Solutions

- Minimize the size of the current loops
 - Locate transformer, controller, and motor in closest possible proximity to each other
 - Transformer should have delta primary, wye secondary, bonded very close to motor
 - Prevents feeders to transformer from being part of the current loop
 - Twist neutral and phase conductors

Reasons for Using Conduit


- Physical protection of wiring
 - Reduces long term maintenance costs
- Make installation (and upgrades) easier
- Shielding

Conduit and Shielding

- Electric field
 - Continuous and conductive
- Magnetic field
 - Continuous and ferrous material (steel)
- Steel conduit is the only practical magnetic shielding for our wiring
- Continuous includes any junction boxes and couplings in the path

Antenna and Cable Systems

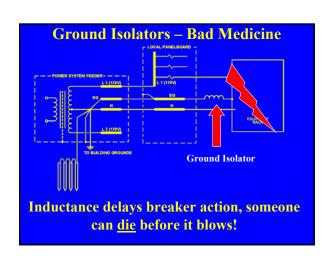
- Should enter the building near the power system earth bond and should be bonded to it by the shortest possible path
- Bond should be outside the building if possible
- Add isolator inside the building after the bond (to avoid audio ground loops)

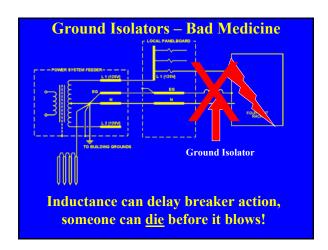
Telephone Lines

- They are a common lightning target, so need a good arrester and short bond to the building bonding point
- Poor bonding is common
- Lightning doesn't know the installer was in a different trade union or covered by a different national safety code

Troubleshooting Tools

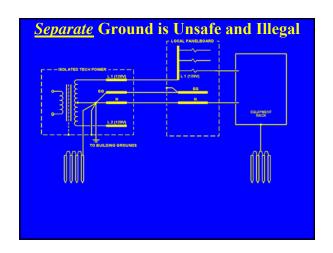
- Ammeters
 - Current Probes
- Volt-Ohmeter
 - Low Ohms Scale Important
- Magnetic Field Probe
- Radio Receiver
- Headphone Amplifier
- Battery Powered Scope

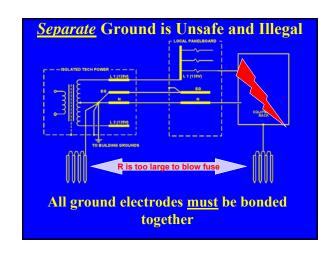


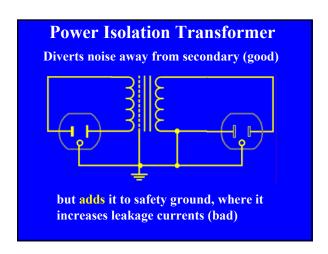


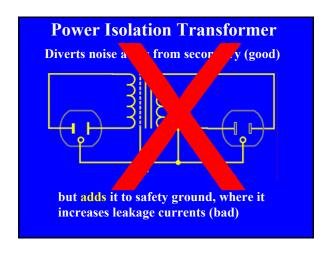
Snake Oil and other Bad Medicine

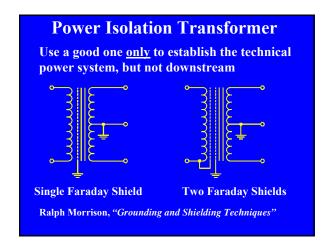
Ground Lifts – Bad Medicine Breaks equipment ground path Prevents breaker from blowing if chassis becomes "hot" Can KILL someone

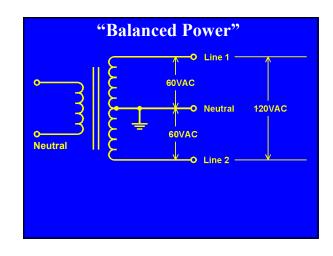


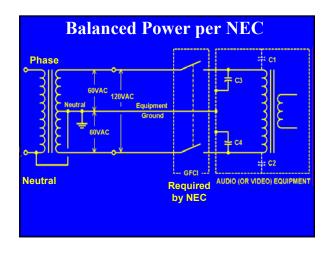


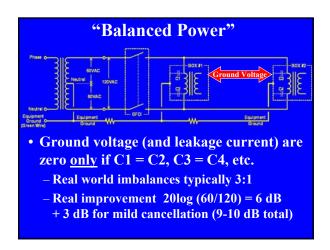

All Ground Electrodes Must be Bonded Together


• Isolated does not mean "separated"



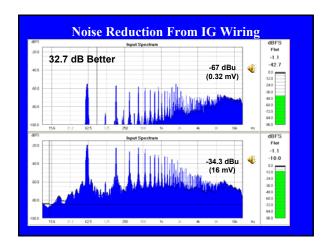






"Balanced" Power

- Symmetrical power <u>seems</u> like a good idea
 - 120-volts between two 60-volt legs
 - In ideal world, it would completely <u>cancel</u> leakage currents into safety ground system
- But not in the real world
- Predicted benefits based on false assumptions



"Balanced Power"

- Actual noise reduction generally under 10 dB and rarely exceeds 15 dB
 - May be cost-effective in certain video applications (video is far less demanding than audio)
- Isolated ground systems can provide more than 30 dB noise reduction
 - And IG systems are a lot less expensive
- Local bonding can provide an additional 20-40 dB noise reduction

Balanced Power - A Field View

- With ordinary un-balanced power, fields from "hot" and neutral currents cancel at any reasonable distance from the wiring.
 - Balanced power does not improve on that.
- With ordinary un-balanced power, an unbalanced field exists between phase (hot) and neutral, but this field also falls off quickly with distance
 - Balanced power balances that field. BUT:
 - Power system noise is coupled by magnetic fields, not electric fields!

Snake Oil – Exotic Power Cords

- Branch circuit wiring typically 75 ft of #14
 - 1.13 volt drop with 3A load
 - 3.78 volt drop with 10A load
- Common IEC power cord is 6 ft of #18
 - 0.23 volt drop with 3A load
 - 0.77 volt drop with 10A load
- Total voltage drop
 - 1.46 volts (118.54 V at outlet) with 3A load
 - 4.55 volts (115.45 V at outlet) with 10A load

Snake Oil - Exotic Power Cords

- Branch circuit wiring typically 75 ft of #14
 - 1.13 volt drop with 3A load
 - 3.78 volt drop with 10A load
- Unobtainium power cord 6 ft of #12
 - 0.057 volt drop with 3A load
 - 0.19 volt drop with 10A load
- Total voltage drop
 - 1.19 volts (118.81 V at outlet) with 3A load
 - 3.97 volts (115.03 V at outlet) with 10A load

Plain Ordinary Copper

- Change branch circuit wiring to #12
 - .715 volt drop with 3A load
 - 2.38 volt drop with 10A load
- Common IEC power cord 6 ft of #18
 - 0.23 volt drop with 3A load
 - 0.77 volt drop with 10A load
- Total voltage drop
 - .945 volts (119.05 V at outlet) with 3A load
 - 3.15 volts (116.85 V at outlet) with 10A load

About Surge Suppression

- Mindless use of MOV suppressors can actually <u>increase</u> equipment damage risk
- MOV's are <u>shunt</u>-mode devices that divert surges onto the equipment ground system
- Surges generate brief but extreme voltage differences in the safety ground system
- Equipment interfaces are often damaged

How MOV's Cause Failures

- An MOV between phase and equipment ground raises the equipment ground to a very high voltage at the point where is is connected
- Another MOV between phase and equipment ground at a <u>different</u> outlet raises the equipment ground at that outlet to a <u>different</u> very high voltage
- If equipment plugged in at these locations is interconnected by low voltage wiring, it will see the difference of the two high voltages.

MOV's Often Fail Destructively

- MOV's are sacrificial they fail after they have conducted a certain number of joules!
 - They often short, and blow a fuse
 - They often <u>open</u>, and give no indication of failure
 - They may partially <u>degrade</u>, losing their ability to conduct the surge
 - On a sufficiently high voltage surge, they can explode
 - And they can catch fire!
- But they are cheap, so they're everywhere!

A Good Use for MOV Suppressors

- Use professional-grade unit at the service entrance to protect an entire building
- MOV's divert surge to the main building common ground bonding point
- The ground reference for the entire building goes up with a surge
- Minimizes likelihood of equipment damage because gradients between grounds exist only due to the lightning field, not due to pollution of equipment ground

What the UL Label Means

- Nearly all UL testing is for safety
 - Fire, flame spread, noxious fumes
 - Electrical shock hazards
- Surge suppressors are usually listed under UL 1449 and tested <u>only</u> for <u>safety</u> (that is, to verify that they won't start a fire)
- The <u>effectiveness</u> of surge suppressors is verified by <u>adjunct testing</u> under UL 1449
 - Very few products are adjunct tested
 - Few would pass

Real Surge Protection

- To protect from lightning induced surges, install devices at main power service entry
- To protect sub-circuits or equipment, use <u>series</u>-mode suppressors
 - Presents a <u>high</u> impedance to the surge
 - Does not dump current into safety ground

Power and Grounding for Audio and Video Systems Part 2

Jim Brown http://audiosystemsgroup.com Andy Benton http://www.surgex.com