RFI and Ham Radio Pin 1 Problems, Poor Shielding, Poor Filtering, and Unintentional Antennas

Jim Brown K9YC http://audiosystemsgroup.com/publish.htm k9yc@arrl.net

Don't Bother Taking Notes – This Presentation is on My Website

http://audiosystemsgroup.com/publish.htm

Two Major Kinds of RFI

- RFI <u>From</u> Our Ham Statio –TVI, Audio/Video Equipment –Security Systems, Garage Doors
- RFI (Noise) To Our Station
 - **–Digital Equipment**
 - **–Power Supplies, Chargers**
 - -Motor Controllers
 - **–Power Line Equipment Failures**

The Heart of the Problem

RFI From Our Ham Station

- Most electronic equipment <u>can</u> work as a radio receiver if allowed to do so
- The wires inside that equipment, and cables that interconnect equipment, are <u>antennas</u>, and can bring radio signals into that equipment

Most RFI is caused by Pin 1 Problems!

That Includes "RF in the Shack," or "RF Feedback!"

How Does It Happen?

- Connectors mounted to PC board
- Shell not bonded to chassis
 - -It should be, but it isn't that costs more!
- Often very difficult to fix
- All inputs and outputs are usually bad
 - -Audio and video
 - -Serial and USB interfaces
 - -Control wiring

Nearly All Equipment Is Built With Pin 1 Problems

- Audio and Video Gear
 - -Home and Professional Audio Systems
 - -TV Sets, Video Recorders, Cable Boxes
- Computers and Accessories
- Ham Rigs and Accessories
- Telephone Equipment

Nice Radio, Has Pin 1 Problems

A Pin 1 Problem in FT-1000MP

Multiple Pin 1 problems cause hum, buzz, and probably RF feedback

<section-header><section-header><list-item><list-item>

Where are the Chassis Connections for this laptop's sound card?

Yes, it's the DB9, DB15, and DB25 shells!

Two Ways to Kill Pin 1 RFI

- Rewire/rebuild the connector
 - -Wire Pin 1 to the chassis, not PC board
 - -Bond connector to chassis, not PC board
- Kill the current
 - -Make the wiring a lousy antenna
 - -Add a common mode choke
 - -Short out the current
 - -Kill the voltage that causes current flow

Ferrites can block the current!

What's a Ferrite?

- A ceramic consisting of an iron oxide
 - manganese-zinc 1-30 MHz
 - nickel-zinc 30 MHz-1 GHz
- Permeability (μ) much greater than air
 - Better path for magnetic flux than air
 - Multiplies inductance of a wire passed through it
- Is very lossy at radio frequencies
- Does not affect audio

What Common Mode Chokes Do

- Add high resistive impedance in series with the common mode circuit, reducing antenna current
- Have no effect on <u>differential</u> signals carried <u>between</u> the conductors, inside the cable

This 4-turn choke is about right for 15-30 MHz

This 5-turn choke is about right for 10-30 MHz

An Effective Choke for 2-10 MHz

14 turns around a #31 core

Ferrites and High Power

- If both conductors of high power circuits are wound through core, the fields cancel, so only the common mode current contributes to saturation
- Thus, ferrite common mode are effective on loudspeaker and power wiring
- Common mode chokes have no effect on audio, video, or control system signals – they are all differential signals

A (too) simple equivalent circuit of a wire passing through a ferrite

Where's the Capacitance here?

From one end of the choke to the other, through the permittivity of the ferrite (it is a dielectric!)

Solving RFI Problems

Strategy to Kill RFI

- How bad is the problem?
- Where is it getting in (or out)?
- Work on most common problems first
 - -Pin 1 Problems
 - -Speaker cable
 - -CATV leakage
 - -Cables with poor shielding
- These problems have easy solutions

RFI From Your Station

- How bad is the problem?
 - Reduce your TX power until RFI stops
 - Convert the reduction to $dB 10 \log (P_2/P_1)$
 - That's how much suppression you need
 - Repeat for each ham band and victim gear

If problem is TVI

- Interference to picture, or only sound?
- Interference if TV is off?

Kill Antenna Current

- Identify the most likely antennas
- Add a choke tuned to the RFI

RFI From Your Station

- Identify the most likely RX antennas
- Start with longer "antennas"
 Rooftop and CATV lead-ins, speaker cables
- Add a ferrite choke tuned to the frequency of the RFI (see graphs)
- Attack shorter antennas if still a problem
 Interconnect cables in an A/V setup

This 4-turn choke is about right for 15-30 MHz

This 5-turn choke is about right for 10-30 MHz

An Effective Choke for 2-10 MHz

14 turns around a #31 core

RFI From Your Station

- If RFI is only to sound, and happens with TV turned off (TV feeds A/V system)
 - Problem is in the audio equipment
 - Replace speaker wiring with twisted pair
 - Choke the speaker wiring first
 - Choke cable(s) between TV and audio rig
 - Choke coax from antenna or cable box

You May Not Need an Elephant Gun

- Most detection is square law, so:
 - -A 10 dB reduction in RF level reduces audible interference by 20 dB
- But we <u>must</u> add enough impedance to overcome the threshold effect

Threshold Effect

- The ferrite choke should <u>add</u> enough series R that the <u>resulting</u> Z is 2x the series Z of the "antenna" circuit without the choke. This reduces RF current by 6 dB, and detected RF by 12 dB.
- Very little suppression occurs until the added R is at least half of the starting Z.
- More choking impedance is better!

Criteria for Good Suppression

- Choke must be predominantly resistive

 Low Q, near resonance, #31, #43 only
 Use measured curves to set resonance
 - 1 000 about is a minimum design so a
- 1,000 ohms is a <u>minimum</u> design goal
- 5k ohms or more needed for RX noise
 - Use more turns to lower resonance
 - Use chokes in series to get more resistance

Criteria for Good Suppression

- Use only #31 material below 5 MHz
- Use #31 or #43 material above 5 MHz
 - -#43 slightly better above 10 MHz

Covering Wide Frequency Ranges

- Use multiple chokes in series, each tuned to a different frequency range
- Put highest frequency choke closer to the equipment
- Example:
 - -14 turns on #31 toroid for 2-10 MHz
 - -8 turns on #31 or #43 toroid for 10-30 MHz

This expensive loudspeaker cable makes equipment vulnerable to RFI

Parallel wire (zip cord) has very poor RFI rejection

RFI From Your Station

- If RFI causes picture and sound breakup, the TV or cable box is most likely problem
 - Choke coax from roof antenna, cable box, or satellite downlink
 - Choke cables to video recorder, A/V rig
- If chokes don't help and TV is on a CATV system, check for leakage in that system

Leaky CATV Systems

- Tune an FM talkie to 145.25 and probe around CATV wiring look for a buzzy carrier (cable channel 18)
- When you find a buzzy carrier, you've found a leak
- There may be more than one
- The CATV company should fix their leaks
- Leaks also spew RF trash on ham bands

Antennas Inside Equipment

- Wires and circuit traces are antennas too
- Shield the equipment

or:

- Add a ground plane on a second layer
 - Each circuit trace is now a transmission line
 - Current returns on ground plane under trace
 - Minimizes the loop area
 - Minimizes antenna action
 - Microstrip (one ground plane)
 - Stripline (two ground planes sandwich the trace)

Shielding Failures

- Plastic cases
- Openings in shielded cases
 - Gaps between pieces of metal case
 - Paint at joint of metal surfaces creates a slot opening, RF escapes
- Cables enter case without bond to case
- Breaking a ground plane under a trace
 - Defeats the ground plane current flows in a big loop, becomes antenna <u>and</u> magnetic loop

No Easy Fixes for Most Equipment Shielding Failures

- Scrape the paint to close slot openings
- Bond cable shields to the case
- Most other shielding problems usually require a complete rebuild
- Return to manufacturer as defective
- Give it the bucket treatment

The Bucket Treatment

- Find a bucket large enough to hold the defective equipment
- Fill it with water
- Put the equipment in twice
- Take it out once

Cable Shielding Problems

- Many common A/V cables have poor shields
- Add a ferrite choke to the cable or:
- Build your own cables using coax with a robust copper braid shield (RG174, RG58)

Making Your Own Audio Cables

- Much better than you can buy
- Use coax with robust copper braid shield
- Use Switchcraft and Neutrik Connectors

 Full Compass Systems, Madison, WI
 Sweetwater, Ft. Wayne, IN
- Buy connectors in quantity shipping is much of the cost
- Expensive high futility stuff not a solution

Cable-Mount Audio Connectors

Description	Switchcraft	<u>Neutrik</u>
3-ckt male 1/8" plug	35HDNN	NYS231BG
2-ckt male 1/8" plug		NYS226BG
3-ckt female 1/8" jack		NYS240BG
Phono (RCA) male plug	3502	NYS352
Phono female jack	3503	

Cable Problems – Paired Cable

- Parallel wires (zip cord) cause RFI
- Twisted pair cable rejects hum, buzz, RFI
- Replace zip cord with twisted pair
 - CAT5/6 for telephone wiring, security systems
 - -#14 gauge between loudspeakers and power amp
 - CAT5/6 for RS232 cables, one pair per circuit
 - Improvements of 20-30dB (100-1,000X the power)
- <u>Twisting</u> is <u>far</u> more important than shielding

RFI to Telephones and DSL Modems

- Use only CAT5/6 for telephone wiring
- Use one pair for each circuit
 Blue = hot, blue/white = return
- Tune DSL chokes to ~2 MHz
 - -30 turns on one #31 toroid
 - -22 turns on two #31 toroids
- Place choke very close to DSL modem
- Use add'l choke(s) if needed

RFI to Telephones and DSL Modems

- Choke every cable connected to phone or modem
- Try for at least 10k ohms
- Telephones are known RFI dogs
- For wireless phones, choke the cable(s) at the base station

Security Systems

- Very poor RF rejection
- Connections between sensor and main unit are usually a simple switch contact
 - Try a small cap (470-1000 pF) across the cable pair at the main unit
 - -Replace wiring with twisted pair
 - Chokes may help, but are <u>not</u> the first thing to try

Security Systems

- When connections carry data
 - -Do not use a capacitor
 - -Replace wiring with CAT5
 - -Add choke at both ends
- When data is carried on the power line
 - Use twisted triplet cable for power wiring
 - -Put power in steel conduit if you can
 - -Call the manufacturer and force them to fix it

The Other Half of the Problem – RFI to Ham Radio

RFI <u>To</u> Ham Radio

- RF noise is generated inside equipment
- The wires inside equipment, and cables that interconnect equipment, are <u>antennas</u>, and can <u>transmit</u> that RF noise
- The same problems that let RF <u>into</u> the box also let it <u>out</u> of the box
 - Pin One Problems
 - Poor shielding and poor circuit layout
- Our antennas receive it like any other signal

Sources of RF Noise

- Switching Power Supplies, including Battery Chargers
- Equipment with digital circuitry
 - Computers, audio and video gear, ham gear
- Plasma TV Sets
- Faulty Insulators in Power Systems
- Variable Speed Motors

What is Digital Noise?

- Most digital noise results from oscillators or clocks that produce square waves
- Square waves have lots of harmonics
- Fast rise times = strong harmonics

That's the PSU for my SteppIR

- I'd already suppressed the noise by more than 20dB before I took these pictures!
- I've worked a lot of guys who don't move my S-meter
- 10 dB of noise makes a 1kW signal seem like a 100W signal
- 20dB of noise makes 1kW seem like 1W
- You can't work 'em of you can't hear 'em!
- It's really worth it to chase and kill RX noise

Why a Hump Instead of a Steady Carrier?

- Oscillators are *dithered* (FM-modulated by noise) to skirt FCC RFI rules
- That noise causes them to wobble around in frequency or drift, and the modulation makes them broad
- FCC rules limit the strength of carriers, so the FM noise moves some of power from carrier to sidebands

The Principle of Reciprocity – Coupling Works Both Ways

• Problems that let RFI <u>into</u> the box also let it <u>out</u> of the box

- Pin One Problems
- **–** Poor Shielding
- **Poor Filtering**
- Large magnetic loop area
- -Accidental Antennas

The Principle of Reciprocity -Coupling Works Both Ways

- Techniques that minimize <u>received</u> interference will generally also reduce <u>transmitted</u> noise
- Relative <u>strength</u> of coupling depends on impedances of the coupled circuits, and may not be equal in both directions

- How bad is the problem?
- Band noise should increase when the band is open, quiet when it is dead
 - -10-20dB increase is typical
 - -Noise on 40, 80 and 160 should be low during the day, increase 10-20dB at night
 - Higher bands should also increase, but timing more complex

Measuring RFI To Your Station

- Most S-meters not very accurate
- One S-unit should be 6dB, but for most it's more like 3-4 dB
- A properly aligned K3 is accurate
- Our objective is to reduce local RX noise so that we see noise increase when the band is open

- Start with your own home first
- Run your station on a battery and kill power to your home
 - -Be sure to turn off any UPS units
- Any noise that goes away is your noise
- Restore power, and turn off one breaker at a time until noise stops (or gets weaker)

RFI <u>To</u> Your Station

- Start with your own home first
- Learn to locate and kill noise at home, so you don't look like a dummy if you can work on your neighbors' noise

- Noise <u>must</u> be killed at the <u>source</u>
- You <u>must</u> find the source to kill the noise
- Exception use antenna location and directivity to <u>reduce</u> noise
 - -Move antennas away from noise sources
 - Use serious chokes on your feedlines at the feedpoint (that is, up in the air)

RFI From Digital Equipment

- What are the antennas?
 - Every interconnecting cable
 - -The AC power line
- Wind multiple turns of AC cable through toroid to form choke
- Wind every interconnect cable through toroid to form choke

RFI From TV Sets, Cable Boxes

- What are the antennas?
 - -Every audio/video cable
 - -Coax from antenna, cable box, or DVR
 - -The AC power line
- Wind multiple turns of AC cable through toroid to form choke
- Wind every interconnect cable through toroid to form choke

This 4-turn choke is about right for 15-30 MHz

This 5-turn choke is about right for 10-30 MHz

An Effective Choke for 2-10 MHz

14 turns around a #31 core

RFI From Switching Power Supplies

- What are the antennas?
 - -The DC cable
 - -The AC power line

<section-header>

RFI From Battery Chargers

- What are the antennas?
 - -The AC power line
 - -The DC cable, if there is one
- Treat it like any other switching power supply choke the antennas!

RFI From Switching Power Supplies

- Wind each DC cable through a ferrite core to form a choke
- Plug supplies into multi-outlet boxes and wind AC power cable through toroids to form chokes
- If you can, replace switching power supplies with linear power supplies
 - -Rewire with Anderson Power Poles
 - -Be sure to get the voltage right

Plug Noisy Power Supplies Into Filtered Power Outlets

Field Day Generator RFI Filter Also Needs Ferrite Choke

Identifying Ethernet birdies

- Crystal controlled, wide tolerance, modulated
- Around 14,030 kHz, 21,052 kHz, low end of 10M CW, low end of 6M
- Multiple signals you will hear your neighbors too, each on a slightly different frequency
- Kill power to your router to see if birdies go away, work on those carriers
- Wind each ethernet cable around toroid
- 6-8 turns usually about right
- Some trash due to poorly shielded box

RFI <u>To</u> Your Station

- Killing Ethernet birdies
 - -Wind each cable around toroid
 - -6-8 turns usually about right
 - -Don't forget power supply cable
 - -Some trash due to poorly shielded box
- Use shortest cables possible
 - -Longer cable is better antenna

Two More Equipment Design Issues

- Magnetic Coupling
- Fast Rise Times

Magnetic Coupling

- A problem often overlooked by circuit and system designers
- A very potent coupling mechanism
- Strongly couples any large currents
 - Switching power supplies
 - Battery chargers
 - Variable speed motor controllers
 - Lighting controllers
 - Solar power systems and regulators

Current Flows in Loops

- Where does the return current flow?
 - Large loop area = strong magnetic field
 - Large loop area = more magnetic reception
 - Long wires = better antennas
- Good RFI design = very small loop areas and short antennas (or no antennas)
 - Place RF bypass cap directly between C and E of switching transistor, zero length leads
 - Keeps the loop area small for RF current

Rise Time

- RF trash proportional to switching speed
- Good RFI design = slow down the rise times of large pulsed currents
- Fast switching = lower power dissipation
- These are conflicting requirements
- Small rounding of waveform can greatly reduce RFI with little effect on dissipation

Troubleshooting RFI

- RFI often enters equipment (and systems) by more than one path.
- When you find one path, always assume that there may be others!
- Take a methodical approach. Don't give up when one "right" technique doesn't fix it – keep on doing other "right" things. The "right" techniques really are right!

Troubleshooting RFI

- It usually helps to have an assistant
- You operate your station while your assistant watches/listens for RFI in your living room (or your neighbor's)
- Your assistant listens to your station while you kill breakers one at a time to find noise sources, then add chokes as needed
- Use talkies to communicate

The Biggest Myths

Myth: "I need a better ground"

Fact: A connection to earth almost never reduces noise or RFI, and it will often make it worse, because the "ground wire" can act as an antenna. Fact: A connection to earth <u>is</u> very important for lightning protection.

The Biggest Myths

Myth: "I need a <u>separate</u> RF ground" Fact: Separate grounds are <u>unsafe</u> – they can kill someone, increase lightning damage, even start a fire. Fact: Separate grounds are more likely to <u>cause</u> problems than to fix them. Fact: <u>BY LAW</u>, all grounds <u>must</u> be bonded together

Definitive Text On RFI

Electromagnetic Compatibility Engineering, Henry Ott, Wiley, 2009

References

- Henry Ott, *Electromagnetic Compatibility Engineering*, Wiley Interscience, 2009
- E. C. Snelling, *Soft Ferrites, Properties and Applications*, CRC Press, 1969
- E. C. Snelling and A. D. Giles, *Ferrites for Inductors and Transformers*, Research Study Press, 1983
- Fair-Rite Products Catalog This 200-page catalog is a wealth of product data and applications guidance on practical ferrites. http://www.fair-rite.com
- Ferroxcube Catalog and Applications Notes More online from another great manufacturer of ferrites. http://www.ferroxcube.com
References

- Noise Susceptibility in Analog and Digital Signal Processing Systems, N. Muncy, JAES, June 1995
- Radio Frequency Susceptibility of Capacitor Microphones, Brown/Josephson (AES Preprint 5720)
- Common Mode to Differential Mode Conversion in Shielded Twisted Pair Cables (Shield Current Induced Noise), Brown/Whitlock (AES Preprint 5747)
- Testing for Radio Frequency Common Impedance Coupling in Microphones and Other Audio Equipment, J. Brown (AES Preprint 5897)
- A Novel Method of Testing for Susceptibility of Audio Equipment to Interference from Medium and High Frequency Broadcast Transmitters, J. Brown (AES Preprint 5898)

References

- New Understandings of the Use of Ferrites in the Prevention and Suppression of RF Interference to Audio Systems, J. Brown (AES Preprint 6564)
- Understanding How Ferrites Can Prevent and Eliminate RF Interference to Audio Systems, J. Brown Self-published tutorial (on my website)
- A Ham's Guide to RFI, Ferrites, Baluns, and Audio Interfacing, J. Brown Self-published tutorial (on my website)

Applications notes, tutorials, and my AES papers are on my website for free download

http://audiosystemsgroup.com/publish