Antenna Planning for Small HF Stations (and even larger ones)

Jim Brown K9YC k9yc@arrl.net http://k9yc.com/publish.htm

Don't Bother Taking Notes

This Power Point, and a lot more, are at k9yc.com/publish.htm

What This Is About

- This is the third in a series of studies focused on antenna systems for limited space, and/or with limited availability of supports.
 - Part One studied the question, "If I Can Put My Multi-band HF Vertical On My Roof, Should I?"
 - Part Two studied the strengths and weaknesses of the 43 Ft vertical.
 - Both are at k9yc.com/publish.htm

My Method

- This work is based entirely on modeling, using W7EL's EZNEC
 - All use simple antennas half wave dipoles, ground planes, 3-el Yagi
- A model that <u>accurately</u> and <u>completely</u> describes an antenna system will accurately predict its performance

The Accuracy of a Model

- A model must include things that interact with the antenna
 - The earth soil conditions, height
 - The feedline, if not isolated by a common mode choke
 - Other conductors around the antenna (including other antennas and their feedlines)

What This Presentation Is About

- The current work:
 - studies how ground quality affects performance of horizontal and vertical antennas
 - studies how <u>height</u> affects performance of horizontal dipoles and small Yagi antennas
 - compares the performance of ground- and roof-mounted verticals with $\lambda/2$ horizontal dipoles at heights in the range of 33 Ft.
 - compares small Yagis at various heights
 - Ignores terrain (assumes "flatland")
 - Ignores surround objects

What This Presentation Is About

- The current work attempts to help us answer these questions:
 - With my available real estate, skyhooks, budget, and operating interests, will I get better performance from a vertical or a horizontal antenna?
 - How much is additional height worth in dB?
 - Should I spend money on a tower, tree climbers, or a power amp?

What We've Already Learned

- Vertical antennas work better at 20-40 ft than they do on the ground
 - How much better depends on the quality of your ground
 - Improvement is greatest for poorest soil quality
 - Sandy and rocky soil are very poor
 - City soil conditions are generally worse
 - The best soil around here is in the delta
 - Most of us have poor to average soil

What We've Already Learned

- Measurements by NOAX and K7LXC show that the most effective verticals are dipoles
- Vertical dipoles do <u>not</u> need radials
- Ground planes <u>do</u> need radials
 - Includes most "trap" designs, Butternut
 - Trap designs tend to be less efficient
 - On your roof, two resonant radials per band is pretty good, one per band is OK
 - On the ground, many radials are needed

20M Vertical Dipole, base at 20 Ft

14.2 MHz

Black (Refer	rence)Cu	rve is Verv (Good Ground
			-1 11 dBPrTrc
Outer Ring	1.92 dBi		-4.85 dBmax
Azimuth Angle	0.0 deg.	Gain	-2.93 dBi
Elevation Plot		Cursor Elev	5.0 deg.

20M Vertical Dipole, base at 33 Ft

14.2 MHz

Elevation Plot		Cursor Elev	5.0 deg.
Azimuth Angle	0.0 deg.	Gain	-1.32 dBi
Outer Ring	3.35 dBi		-4.04 dBmax
			0.86 dBPrTrc
Black (Refei	rence)Cu	rve is Verv (Good Ground
Diack (Reiel	encejuu	rve is very c	sood Ground

40M Horizontal Dipole, at 33 Ft 7.1 MHz

Elevation Plot		Cursor Elev	5.0 deg.
Azimuth Angle	0.0 deg.	Gain	-9.23 dBi
Outer Ring	6.82 dBi		-14.26 dBmax
			0.6 dBPrTrc

Black (Reference)Curve is Very Good Ground

40M Horizontal Dipole @ 33 – 73 Ft 7.1 MHz

Elevation PlotCursor Elev10.0 deg.Azimuth Angle0.0 deg.Gain3.28 dBiOuter Ring7.85 dBi-4.56 dBmax7.17 dBPrTrc

Black (Reference) Curve is 33 Ft

40M Horizontal Dipole @ 80 - 110 Ft 7.1 MHz

Elevation PlotCursor Elev10.0 deg.Azimuth Angle0.0 deg.Gain3.86 dBiOuter Ring7.71 dBi-3.84 dBmax-1.3 dBPrTrcBlack (Reference) Curve is 110 Ft

How Much is Height Worth?

- For a 40M horizontal dipole (or Yagi)
 - 0.9 dB for 5 ft between 30 Ft and 70 Ft below 15°
 - 6 dB for $\lambda/4$ (33 Ft) to $\lambda/2$ (67 Ft)
 - 2.5 dB for $\lambda/2$ (67 Ft) to λ (133 Ft)

How Much is a **Tower** Worth?

- For a 40M horizontal dipole (or Yagi)
 - 0.9 dB for 5 ft between 30 Ft and 70 Ft below 15°
 - 6 dB for $\lambda/4$ (33 Ft) to $\lambda/2$ (67 Ft)
 - 2.5 dB for $\lambda/2$ (67 Ft) to λ (133 Ft)

80M <u>Horizontal</u> Dipole @ 33 – 70 Ft 3.55 MHz

Elevation Plot		Cursor Elev	67.0 deg.
Azimuth Angle	5.0 deg.	Gain	5.7 dBi
Outer Ring	5.87 dBi		-0.05 dBmax
			1.21 dBPrTrc

Black (Reference) Curve is 33 Ft

How Much is Height Worth?

- For an 80M horizontal dipole (or Yagi) at 15° and below
 - 0.9 dB for 10 ft between 40 Ft and 130 Ft
 - 3.5 dB for $\lambda/8$ (33 Ft) to $\lambda/4$ (67 Ft)
 - 6 dB for $\lambda/4$ (67 Ft) to $\lambda/2$ (133 Ft)
- On the lower bands, we need less signal to work short distances than long distances
- An antenna cannot be "too high" for 80M

80M <u>Horizontal</u> Dipole @ 33 – 70 Ft 3.55 MHz

Elevation Plot		Cursor Elev	67.0 deg.
Azimuth Angle	5.0 deg.	Gain	5.7 dBi
Outer Ring	5.87 dBi		-0.05 dBmax
			1.21 dBPrTrc

Black (Reference) Curve is 33 Ft

How About NVIS?

- For a horizontal dipole, $\lambda/4$ high is near optimum
 - 133 ft on 160M
 - 67 ft on 80M
 - 33 ft on 40M
- The only reason to rig a horizontal antenna lower than $\lambda/4$ is that's the best you can do

Can An Antenna Be Too High?

 I want to work locals for nets and during contests. Does a high antenna give away too much high angle performance?

Inverse Square Law

- Seattle is 6 dB closer than Chicago, 8 dB closer than Boston
- An antenna that favors Chicago (70° azimuth) will work Seattle (5°) as easily as it works Chicago
- On the lower bands, we need less signal to work short distances than long distances

How About NVIS?

- For a horizontal dipole, $\lambda/4$ high is near optimum
 - 133 ft on 160M
 - 67 ft on 80M
 - 33 ft on 40M
- At λ/2 high, an antenna is -10 dB from λ/4 high, but Inverse Square Law makes up the difference
- The only reason to rig a horizontal antenna lower than λ/4 is that it's the highest you can get it

Let's Study Some Modeling Results

First Series

40M Horizontal Dipole @33 Ft (Black curve) compared to: 40M Ground-mounted quarter wave with 4 Ohm Radial System (Green curve), and 40M Ground Plane @ 33 Ft (Red Curve) Vertical Pattern, Cursor at 10°

Total Field

7.1 MHz Black is Horizontal Dipole @ 33 Ft

Elevation Plot	
Azimuth Angle	0.0 deg.
Outer Ring	5.03 dBi

Cursor Elev Gain

10.0 deq.

-1.43 dBi

-1.79 dBmax

2.23 dBPrTrc

Total Field

EZNEC Pro/2

Black is Horizontal Dipole @ 33 Ft 7.1 MHz

Elevation Plot		Cursor Elev	10.0 deg.
Azimuth Angle	0.0 deg.	Gain	-0.74 dBi
Outer Ring	6.02 dBi		-0.81 dBmax
			3 15 dBPrTrc

Total Field

EZNEC Pro/2

Black is Horizontal Dipole @ 33 Ft 7.1 MHz

Elevation Plot		Cursor Elev	10.0 deg.
Azimuth Angle	0.0 deg.	Gain	1.66 dBi
Outer Ring	6.82 dBi		-0.15 dBmax
			5.65 dBPrTrc

First Series – Azimuth Plots

40M Vertical on Ground (Red curve) 40M Ground Plane at 33 Ft (Green curve) 40M Horizontal Dipole @ 33 Ft Azimuth Plot @ 10° Elevation

Black (Reference) Curve is Dipole @ 33 Ft

Second Series

20M Vertical Dipole at 20 Ft (Red curve) 20M Vertical Dipole at 33 Ft (Green curve) 20M Horizontal Dipole @ 33 Ft (Black curve) Cursor at 5 degrees

Elevation Plot		Cursor Elev	5.0 deg.
Azimuth Angle	0.0 deg.	Gain	-2.93 dBi
Outer Ring	6.37 dBi		-4.85 dBmax
			0.75 dBPrTrc

20M Horizontal Dipole @ 33 Ft 14.1 MHz

Elevation Plot	
Azimuth Angle	
Outer Ring	

0.0 deg. 6.86 dBi Cursor Elev Gain

- 5.0 deg. -2.03 dBi
 - -2.03 ubi
 - -3.58 dBmax
 - 1.7 dBPrTrc

EZNEC Pro/2

Elevation Plot		Cursor Elev	5.0 deg.
Azimuth Angle	0.0 deg.	Gain	-2.51 dBi
Outer Ring	7.11 dBi		-3.48 dBmax
			1.12 dBPrTrc

EZNEC Pro/2

Elevation Plot		Cursor Elev	5.0 deg.
Azimuth Angle	0.0 deg.	Gain	-2.81 dBi
Outer Ring	7.33 dBi		-3.11 dBmax
			0.69 dBPrTrc

EZNEC Pro/2

Elevation Plot		Cursor Elev	5.0 deg.
Azimuth Angle	0.0 deg.	Gain	-1.82 dBi
Outer Ring	7.67 dBi		-2.75 dBmax
			1.65 dBPrTrc

Second Series – Azimuth Plot

20M Vertical Dipole at 20 Ft (Red curve) 20M Vertical Dipole at 33 Ft (Green curve) 20M Horizontal Dipole @ 33 Ft (Black curve) Azimuth Plot @ 5° Elevation

Black (Reference) Curve is Dipole @ 33 Ft

Third Series

Varying height of 20M 3-el Yagi @ 33 Ft, 50 Ft, 67 Ft, 84 Ft, 101 Ft $(\lambda/2, 3\lambda/4, \lambda, 5\lambda/4, 3\lambda/2)$ Azimuth Plot @ 5° Elevation

33 Ft, 50 Ft, 67 Ft, 84 Ft, 101 Ft

33 Ft, 50 Ft, 67 Ft, 84 Ft, 101 Ft

How Much is Height Worth on 20M?

- For a 20M Yagi (or horizontal dipole) at low angles
 - 1 dB for 5 ft between 30 Ft and 60 Ft
 - 6 dB for $\lambda/2$ (33 Ft) to λ (67 Ft)
 - 2 dB at 5° for 67 Ft to 100 Ft

Fourth Series

Height of 20M 3-el Yagi (Black curves) @ 33 Ft, 50 Ft, 67 Ft ($\lambda/2$, $3\lambda/4$, λ) $\lambda/2$ Vertical dipole at 33 Ft (Red curves) Azimuth Plot @ 5° Elevation

Vertical Dipole @ 33 Ft

Fifth Series

Height of 20M Dipole @ 33 Ft, 40 Ft, 50 Ft, 60 Ft

Elevation Plot Azimuth Angle 5.0 deg. Outer Ring 7.78 dBi Cursor Elev Gain

10.0 deg. 5.58 dBi -1.54 dBmax

3.74 dBPrTrc

Effect of Height on a Horizontal 20M Dipole

Higher Antennas Have Nulls

- Nulls in vertical pattern begin for height > $\lambda/2$
 - 67 Ft on 40M
 - 33 Ft on 20M
 - 22 Ft on 15M
 - 17 Ft on 10M
- The Null starts high, move down as antenna is raised
- Above λ , a second null develops
- Height does the same thing to a Yagi

Elevation Plot Azimuth Angle 5.0 deg. Outer Ring 7.78 dBi Cursor Elev Gain

10.0 deg. 5.58 dBi -1.54 dBmax

3.74 dBPrTrc

Effect of Height on a Horizontal 20M Dipole

Sixth Series

Vertical or Low Dipole for 80M? 80M λ/2 (133 ft long) Dipole at 33 ft (Black curve) 33 Ft Tall Tee Vertical w/48 Ft Top (Red curve)

Poor to Average Grounds

Simple Tee Vertical

* 80M33FtTee48FtTop4-33FtRadSandy

Elevation Plot Azimuth Angle — 0.0 deg. Outer Ring — 4.88 dBi

Cursor Elev Gain 10.0 deg.

-5.48 dBi

-3.06 dBmax

EZNEC Pro/2

Sandy

2.08 dBPrTrc

Tee Vertical 33 Ft Tall, 48 Ft Top

Elevation Plot Azimuth Angle 0.0 deg. Outer Ring 5.78 dBi Cursor Elev Gain

10.0 deg. -3.48 dBi -2.33 dBmax

EZNEC Pro/2

3.79 dBPrTrc Tee Vertical 33 Ft Tall, 48 Ft Top

Conclusions – What We've Learned

- Higher/taller is nearly always better
 - All verticals work better up in the air
 High horizontal antennas work better
- Inverted L or Tee vertical with radials beats a low dipole
 - -40 ft is low for 80M
 - 125 ft is low for 160M

Inverted L

How Much is Height Worth?

- For a 40M horizontal dipole (or Yagi)
 - 0.9 dB for 5 ft between 30 Ft and 70 Ft below 15°
 - 6 dB for $\lambda/4$ (33 Ft) to $\lambda/2$ (67 Ft)
 - 2.5 dB for $\lambda/2$ (67 Ft) to λ (133 Ft)
- For a 20M Yagi (or horizontal dipole)
 - 1 dB for 5 ft between 30 Ft and 60 Ft
 - 6 dB for $\lambda/2$ (33 Ft) to λ (67 Ft)
 - 2 dB at 5° for 67 Ft to 100 Ft

How Much is a **Tower** Worth?

- For a 40M horizontal dipole (or Yagi)
 - 0.9 dB for 5 ft between 30 Ft and 70 Ft below 15°
 - 6 dB for $\lambda/4$ (33 Ft) to $\lambda/2$ (67 Ft)
 - 2.5 dB for $\lambda/2$ (67 Ft) to λ (133 Ft)
- For a 20M Yagi (or horizontal dipole)
 - 1 dB for 5 ft between 30 Ft and 60 Ft
 - 6 dB for $\lambda/2$ (33 Ft) to λ (67 Ft)
 - 2 dB at 5° for 67 Ft to 100 Ft

How Much is Height Worth?

- For an 80M horizontal dipole (or Yagi) at 15° and below
 - 0.9 dB for 10 ft between 40 Ft and 130 Ft
 - 3.5 dB for $\lambda/8$ (33 Ft) to $\lambda/4$ (67 Ft)
 - 6 dB for $\lambda/4$ (67 Ft) to $\lambda/2$ (133 Ft)
- On the lower bands, we need less signal to work short distances than long distances
- Antennas cannot be "too high" or too tall for 80M or 160M, and few of us can get an antenna too high for 40M

Most Rules Have Exceptions

- Terrain affects an antenna's vertical pattern
 - Use HFTA to study your non-flat QTH
 - ARRL Antenna Book CD
- Verticals are usually best for all distances on 160M

Most Rules Have Exceptions

- Most DX is at low angles <u>but not always</u>!
 - If DX is at high angles, a lower antenna may work better
- We may want to work short distances (a few hundred miles) on 80M and 40M
 - Verticals don't work well at high angles (which is why verticals are thought of as weak by ragchewers on 75 and 40M)
 - Horizontal antennas will work better
For NVIS

- For a horizontal dipole, $\lambda/4$ high is near optimum
 - 133 ft on 160M
 - 67 ft on 80M
 - 33 ft on 40M
- Horizontal antenna lower than $\lambda/4$ are both cloud-warmers and worm warmers
- The only reason to rig a horizontal antenna lower than $\lambda/4$ is that's the highest you can rig it

Using What We've Learned

- Study your QTH for a while
- Explore all possible skyhooks, their cost
- Try to rig dipoles broadside to 70° 90° Az
 - Nulls matter more than peaks
 - Nulls should avoid population centers
- Avoid crossing over a power line
- Be safe get help from other hams when you need it

Using What We've Learned

- Don't let the "great" be the enemy of the good
- Use this presentation to help you learn what works best for what you <u>can</u> do
- Put something up and get on the air
- Any antenna that's in the air works better than an antenna that's in your basement!
- Think about ways to do it better
- Use my results to predict the relative results of antennas that <u>you</u> can rig

2-EI Yagi 40M or Higher Dipoles?

- If I had a choice between 2 elements at 70 feet on a tower, or two dipoles at right angles at 120 ft, which gives me the best bang for the buck?
 - 120 ft is 2dB better on 40M than 70 ft
 - 40M Yagi is about 3.5 dB better than a dipole at the same height (assuming compact version)
 - The Yagi at 70 ft is 1.5dB better than dipoles at 120 ft for same feedline length

Cost of the Two Options

- Cost of two high dipoles
 - About \$1,800 if you have the trees (\$1,400 for climbers, \$400 for antennas, coax, chokes)
- Cost of Optibeam Moxon on 70 ft tower
 - About \$7,500 (\$2,500 for antenna, coax, choke, \$2,000 for the tower, \$1,000 for rotor & cable, \$2,000 for climber)
- Cost of Yagi 1.5dB advantage about \$5,500
- Cheaper for what you can do yourself

References and More Ideas

- On k9yc.com/publish.htm
 - If I Can Put My HF Vertical on my Roof, Should I?
 - Antennas For Limited Space (Power Point)
 - Getting On 160M From a Small Lot (and Larger Ones Too)
- ARRL Antenna Book

Antenna Planning for Small HF Stations (and even larger ones)

Jim Brown K9YC k9yc@arrl.net http://k9yc.com/publish.htm