Antenna Planning for Small HF Stations (and even larger ones)

Jim Brown K9YC k9yc@arrl.net http://k9yc.com/publish.htm

Don't Bother Taking Notes

- This Power Point, and a lot more, are at k9yc.com/publish.htm

What This Is About

- This is the third in a series of studies focused on antenna systems for limited space, and/or with limited availability of supports.
- Part One studied the question, "If I Can Put My Multi-band HF Vertical On My Roof, Should I?"
- Part Two studied the strengths and weaknesses of the 43 Ft vertical.
- Both are at k9yc.com/publish.htm

My Method

- This work is based entirely on modeling, using W7EL's EZNEC
- All use simple antennas - half wave dipoles, ground planes, 3-el Yagi
- A model that accurately and completely describes an antenna system will accurately predict its performance

The Accuracy of a Model

- A model must include things that interact with the antenna
- The earth - soil conditions, height
- The feedline, if not isolated by a common mode choke
- Other conductors around the antenna (including other antennas and their feedlines)

What This Presentation Is About

- The current work:
- studies how ground quality affects performance of horizontal and vertical antennas
- studies how height affects performance of horizontal dipoles and small Yagi antennas
- compares the performance of ground- and roof-mounted verticals with $\lambda / 2$ horizontal dipoles at heights in the range of 33 Ft .
- compares small Yagis at various heights
- Ignores terrain (assumes "flatland")
- Ignores surround objects

What This Presentation Is About

- The current work attempts to help us answer these questions:
- With my available real estate, skyhooks, budget, and operating interests, will I get better performance from a vertical or a horizontal antenna?
- How much is additional height worth in dB?
- Should I spend money on a tower, tree climbers, or a power amp?

What We've Already Learned

- Vertical antennas work better at 20-40 ft than they do on the ground
- How much better depends on the quality of your ground
- Improvement is greatest for poorest soil quality
- Sandy and rocky soil are very poor
- City soil conditions are generally worse
- The best soil around here is in the delta
- Most of us have poor to average soil

What We've Already Learned

- Measurements by NOAX and K7LXC show that the most effective verticals are dipoles
- Vertical dipoles do not need radials
- Ground planes do need radials
- Includes most "trap" designs, Butternut
- Trap designs tend to be less efficient
- On your roof, two resonant radials per band is pretty good, one per band is OK
- On the ground, many radials are needed

Total Field

The Effect of Ground Quality

Primary
2OMVertDipole20FtPastorenta
 20lw vertDipgle

Total Field The Effect of Ground Quality

Primary

 20lw'ertDianle33Ftzonged 20hlvertDifopesisftrourgid

20M Vertical Dipole, base at 33 Ft

14.2 wHz

Elevation Plot
A.zirnuth Angle Outer Ring

Cursor Elev 5.0 deg.
Gein $\quad-1.32 \mathrm{dEi}$
-4.04 dEmax
O.B6 dEPrTro

Black (Reference)Curve is Very Good Ground

Total Field
 The Effect of Ground Quality

Primary
40 wDipole 3 BF ,

* 40 MDipole 23 FCCidtes

40M Horizontal Dipole, at 33 Ft
7.1 MHz

Elevation Plot
A.zirmuth Angle Outer Ring

Cursor Elev 5.0 deg.
Gain
$-9.23 \mathrm{dEi}$
-14.26 dErmax
0.6 dEPrTro

Average Ground

Primary 40WDipole4:3Ft wastid
 40 Wipales Fthasnd

40M Horizontal Dipole @ 33-73 Ft 7.1 MHz

Elevation Plot
A.zimuth A Angle Outer Ring

Cursor Eley 10.0 deg.
Gain
3.28 dEi
-4.56 dErmax
7.17 dEFrTro

Black (Reference) Curve is 33 Ft

Total Field
 Even Greater Heights
 EZNEG Proね
 Primary
 40 WCipole 100 Ft andidy
 4 Whipalegorfsand
 * 40MDipotesioftsafucly

Elevation Plot
Axirnuth Angle Outer Ring

Cursor Elev
Gain
10.0 deg.
3.86 dEi
-3.84 dEmax
$-1.3 \mathrm{dEPrTr} \mathrm{C}$
Black (Reference) Curve is 110 Ft

How Much is Height Worth?

- For a 40M horizontal dipole (or Yagi)
-0.9 dB for 5 ft between 30 Ft and 70 Ft below 15°
- 6 dB for $\mathrm{N} / 4$ (33 Ft) to $\mathrm{\lambda} / 2(67 \mathrm{Ft})$
- 2.5 dB for $\lambda / 2(67 \mathrm{Ft})$ to $\lambda(133 \mathrm{Ft})$

How Much is a Tower Worth?

- For a 40M horizontal dipole (or Yagi)
-0.9 dB for 5 ft between 30 Ft and 70 Ft below 15°
- 6 dB for $\mathrm{N} / 4$ (33 Ft) to $\mathrm{N} / 2(67 \mathrm{Ft})$
-2.5 dB for $\mathrm{N} / 2(67 \mathrm{Ft})$ to $\mathrm{\lambda}(133 \mathrm{Ft})$

Height on 80M

Primary

BiOWDipule4OFtElestrm BiOWDiFolesiof

80M Horizontal Dipole @ 33-70 Ft 3.55 MHz

Elevation Flot A.xirnuth ARIG 5.0 deg. Outer Ring

Gursor Elev 6if 0 deg.
Gain $\quad 5.7 \mathrm{dEi}$
-0.05 dEmax
1.21 dEPrTro

Black (Reference) Curve is 33 Ft

How Much is Height Worth?

- For an 80M horizontal dipole (or Yagi) at 15° and below
- 0.9 dB for 10 ft between 40 Ft and 130 Ft
- 3.5 dB for $\lambda / 8(33 \mathrm{Ft})$ to $\mathrm{\lambda} / 4(67 \mathrm{Ft})$
-6 dB for $\lambda / 4$ (67 Ft) to $\lambda / 2$ (133 Ft)
- On the lower bands, we need less signal to work short distances than long distances
- An antenna cannot be "too high" for 80M

Primary

 BiowDifule50,

80M Horizontal Dipole @ 33-70 Ft 3.55 MHz

Elevation Flot A.zirtuth ARigle 5.0 deg. Outer Ring 5.87 dEi

Cursor Elev 67.0 deg.
Gain $\quad 5.7 \mathrm{dEi}$
-0.05 dEmax
$1.21 \mathrm{dEPr} \operatorname{Trc}$

Black (Reference) Curve is 33 Ft

How About NVIS?

- For a horizontal dipole, $\lambda / 4$ high is near optimum
- 133 ft on 160M
- 67 ft on 80M
- 33 ft on 40M
- The only reason to rig a horizontal antenna lower than $\lambda / 4$ is that's the best you can do

Can An Antenna Be Too High?

- I want to work locals for nets and during contests. Does a high antenna give away too much high angle performance?

Inverse Square Law

- Seattle is 6 dB closer than Chicago, 8 dB closer than Boston
- An antenna that favors Chicago (70° azimuth) will work Seattle (5°) as easily as it works Chicago
- On the lower bands, we need less signal to work short distances than long distances

How About NVIS?

- For a horizontal dipole, $\lambda / 4$ high is near optimum
- 133 ft on 160M
- 67 ft on 80M
- 33 ft on 40M
- At $\lambda / 2$ high, an antenna is -10 dB from $\mathrm{N} / 4$ high, but Inverse Square Law makes up the difference
- The only reason to rig a horizontal antenna lower than $\lambda / 4$ is that it's the highest you can get it

Let's Study Some Modeling Results

First Series

40M Horizontal Dipole @33 Ft (Black curve) compared to:
40M Ground-mounted quarter wave with 4
Ohm Radial System (Green curve), and 40M Ground Plane @ 33 Ft (Red Curve) Vertical Pattern, Cursor at 10°

Cities

Ground 40MVert40 y

7.1 MHz

Elevation Plot
Axirtuth Angle Outer Ring

Cursor Elev
Gain
0.0 deg.
5.03 dBi

Black is Horizontal Dipole @ 33 Ft 7.1 MHz

Elevation Plot
A.zirmuth Angile

Outer Ring

Gursor Eley 10.0 deg.
Gain

Black is Horizontal Dipole @ $33 \mathrm{Ft} \quad 7.1 \mathrm{MHz}$

Elevation Flot
A.zirtuth Angige Outer Ring

Cursor Elev
Gein
10.0 deg.
$1 . \mathrm{GE} \mathrm{dEi}$

- 0.15 dBriax
5.65 dBPrTro

First Series - Azimuth Plots

40M Vertical on Ground (Red curve) 40M Ground Plane at 33 Ft (Green curve) 40M Horizontal Dipole @ 33 Ft Azimuth Plot @ 10° Elevation

Total Field

EZNEG Proi2
 \section*{\title{
Cities
 \section*{\title{
Cities Ground
}} Ground
}}
10°
Elevation

40M

A.zirtuth Flot		Cursor A.	0.0 deg.
Elevation Angle	0.0 deg.	Qain	-1.46 dEi
Outer Ring	$-1.43 \mathrm{dEi}$		-0.03 dEmax
			2.2 dEPrTre
Black (Reference)		ve is	ole@33

A.zirmuth Flot		Cursor $\mathrm{A}_{\text {S }}$	0.0 deg.
Elevation Angle	0.0 deg.	Gain	-0.74 dEi
Outer Ring	-0.73 dBi		0.0 dEmax
			3.15 dEPrTrc
Black (Reference) Curve is Dipole@33 Ft			

Total Field
Pritiary

10°
Elevation

EZNEC Proi2

Very Good Ground

Azimuth Flot		Cursor Az	0.0 deg .
Elevation Angle	0.0 deg.	Gein	1.6 E dBi
Outer Ring	1.6 E dEi		0.0 dEmax
			5.65 dBPrTrc

Second Series

20M Vertical Dipole at 20 Ft (Red curve) 20M Vertical Dipole at 33 Ft (Green curve) 20M Horizontal Dipole @ 33 Ft (Black curve) Cursor at 5 degrees

20M Horizontal Dipole @ 33 Ft 14.1 mHz

Elevation Plot
Axirnuth Angle Outer Ring

Cursor Elev 5.0 deg.
Gain

Primary

Ground

20M Horizontal Dipole @ 33 Ft ${ }^{14.1}$ MHz

Elevation Plot A.zirnuth A.ngle Outer Ring

Cursor Elev 5.0 deg.
Gain
$-2.0 .3 \mathrm{dEi}$
-3.58 dErmax
1.7 dEPrTro

Prirnary

* 20 MV ertDipole 20 FtAngGT dB

Average Ground

20M Horizontal Dipole @ 33 Ft 14.1 MHz

Elevation Plot
A.zirmuth A. Angle

Outer Ring

Gursor Elev 5.0 deg.
Gain $\quad-2.51 \mathrm{dBi}$
-3.48 d日riax
1.12 dEPrTro

Pastoral

 Ground
20M Horizontal Dipole @ 33 Ft 14.1 MHz

Elevation Plot
A.zirmuth A Angle Outer Ring

Gursor Eley 5.0 deg.
Gain $\quad-2.81 \mathrm{dEi}$
-3.11 dEmax
0.69 dEPrTro

Pritiary

* 20MVertDipole20FthergGBdfant

Very Good Ground

20M Horizontal Dipole @ 33 Ft 14.1 MHz

Elevation Plot
A.zirmuth A.ngle

Outer Ring

Cursor Elev 5.0 deg.
Gain
$-1.82 \mathrm{dEi}$
-2.75 d日riax
1.E 5 dEPrTro

Second Series - Azimuth Plot

20M Vertical Dipole at 20 Ft (Red curve) 20M Vertical Dipole at 33 Ft (Green curve) 20M Horizontal Dipole @ 33 Ft (Black curve) Azimuth Plot @ 5° Elevation

Total Field
Primary 20WWertipole20FT\& * 20MVertipo fagk inn
5°
Elevation

EZNEC Proi2

Cities
 Ground

A.zirnoth Flot		Gursor A.	1.0 deg.
Elevation Angle	0.0 deg.	Gain	-1.32 dBi
Outer Fing	-1.32 dBi		0.0 dErnax
			2.37 dBPrTro

Black (Reference) Curve is Dipole @ 33 Ft

Azimuth Flot		Cursor Az	0.0 deg
Elevation Angle	0.0 deg.	Gain	-1.59 dBi
Outer Ring	-1.59 dEi		0.0 dEriax
			2.03 dEPrTr
Black (Reference)	Curve is Dipole@ 33 Ft		

A.xirnuth Flot

Elevation Angle 0.0 deg.
Outer Ring

Cursor Az 0.0 deg.
Gain $\quad-1.82 \mathrm{dEi}$

$1 . \mathrm{B} 5 \mathrm{dBFrTr} \mathrm{C}$

Third Series

Varying height of 20M 3-el Yagi
 @ 33 Ft , 50 Ft , 67 Ft , 84 Ft , 101 Ft
 ($\lambda / 2,3 \lambda / 4, \lambda, 5 \lambda / 4,3 \lambda / 2)$
 Azimuth Plot @ 5° Elevation

A. irmuth Flot
Elevation Angle 0.0 deg.
Outer Fing
Cursor Ax 0.0deg.
Gain $\quad 7.46 \mathrm{dBi}$
0.0 dErmax
5.79 dEPrTro

Aximuth Flot		Cursor Az	0.0 deg.
Elevation Angle	0.0 deg .	Gain	11.89 dBi
Outer Ring	13.04 dBi		0.0 dEmax
			4.8 dEPrTro

33 Ft, $50 \mathrm{Ft}, 67 \mathrm{Ft}, 84 \mathrm{Ft}, 101 \mathrm{Ft}$

Total Field

EZZNEC Proi2

Average Ground

20M 3-el Yagi

Azirnuth Flot		Gursor A.	0.0 dEg
Elevation Angle	0.0 deg.	Qain	12.74 dEi
Outer Ring	12.74 dBi		0.0 dEmax
			3.01 dEPrTr

33 Ft, 50 Ft, 67 Ft, 84 Ft, 101 Ft

How Much is Height Worth on 20M?

- For a 20M Yagi (or horizontal dipole) at low angles
-1 dB for 5 ft between 30 Ft and 60 Ft
-6 dB for $\mathrm{\lambda} / 2(33 \mathrm{Ft})$ to $\lambda(67 \mathrm{Ft})$
-2 dB at 5° for 67 Ft to 100 Ft

Fourth Series

Height of 20M 3-el Yagi (Black curves) @ $33 \mathrm{Ft}, 50 \mathrm{Ft}, 67 \mathrm{Ft}$ ($\lambda / 2,3 \lambda / 4, \lambda$)
$\lambda / 2$ Vertical dipole at 33 Ft (Red curves) Azimuth Plot @ 5° Elevation

Average Ground

20M 3-el Yagi, 33Ft

Asirtuth Flot
Elevation Angle 0.0 deg .
Outer Fing

Cursor Az 0.0 deg.
Gain $\quad-1.59 \mathrm{dBi}$
0.0 dEmax
-1.65 dEPrTro

Vertical Dipole @ 33 Ft

Total Field
Primary
*20MVertDipoleshatazbegoqgignt
5°
Elevation

EZNEC Prot2

Average Ground

20M 3-el Yagi, 50 Ft

Axirmuth Flot
Elevation Angle 0.0 deg.
Outer Ring

Total Field
Primary

* 20 MV Vertipoleg $\mathrm{F} \mathrm{A} A \mathrm{z}$ Deghongind

Average Ground

20M 3-el Yagi, 67 Ft

A.zimuth Flot		Cursor Az	0.0 deg.
Elevation Angle	0.0 deg.	Gain	-1.59 dEi
Outer Ring	5.78 dEi		0.00 dEmax
			-7.38 dEPrTro
	ertical	ole@	Ft

Fifth Series

Height of 20M Dipole @ $33 \mathrm{Ft}, 40 \mathrm{Ft}, 50 \mathrm{Ft}$, 60 Ft

Total Field

Elevation Plot A.zimuth Angle 5.0 deg. Outer Ring 7.78 dEi

Cursor Elev 10.0 deg.
Gain
5.58 dBi
-1.54 dEmax
3.74 dEPrTrc

Higher Antennas Have Nulls

- Nulls in vertical pattern begin for height > $\lambda / 2$
- 67 Ft on 40M
- 33 Ft on 20M
- 22 Ft on 15M
- 17 Ft on 10M
- The Null starts high, move down as antenna is raised
- Above λ, a second null develops
- Height does the same thing to a Yagi

Total Field

Elevation Flot A.zimuth Angle 5.0 deg. Outer Ring

Cursor Elev 10.0 deg.
Gain
5.58 dBi
-1.54 dErmax
3.74 dEPrTre

Effect of Height on a Horizontal 20M Dipole

Sixth Series

Vertical or Low Dipole for 80M? 80M N/2 (133 ft long) Dipole at 33 ft (Black curve) 33 Ft Tall Tee Vertical w/48 Ft Top (Red curve)

Poor to Average Grounds

Simple Tee Vertical

Sandy

80M Dipole
 @ 33 Ft

Elevation Plot
Axirnuth A Migle Outer Fing

Cursor Elev 10.0 deg.
Gain
$-5.48 \mathrm{dEi}$
-3.06 dEmax
2.08 dEPrTre

Tee Vertical 33 Ft Tall, 48 Ft Top

Average Ground

80M Dipole
 @ 33 Ft

Elevation Flot A.zirtuth AMgle Outer Ring
Cursor Eley 10.0 deg.
Gair $\quad-3.48 \mathrm{dEi}$
5.78 dEi
$-2.33 \mathrm{dEmax}$
3.79 dBPrTrc
\section*{Tee Vertical 33 Ft Tall, 48 Ft Top}

Total Field
Primary

EZNEC Prol

Poor Ground

A.zirtuth Flot
Elevation Angle 0.0 deg .
Outer Ring $\quad-5.48 \mathrm{dBi}$
Cursor Az 0.0 deg.
Gain
$-5.53 \mathrm{dEi}$
-0.05 dElimax
2.04 dEPrTr
Tee Vertical 33 Ft Tall, 48 Ft Top

Total Field
Primary

10°
Elevation

Average Ground

80M Dipole @ 33 Ft

Axirmuth Flot
Elevation Angle 0.0 deg.
Outer Fing $\quad-3.48 \mathrm{dEi}$
Cursor Ax 10.0 deg.
Gain $\quad-3.54 d \mathrm{di}$
-0.06 dErmax
3.66 dEPrTre
Tee Vertical 33 Ft Tall, 48 Ft Top

Conclusions - What We've Learned

- Higher/taller is nearly always better - All verticals work better up in the air - High horizontal antennas work better
- Inverted L or Tee vertical with radials beats a low dipole
- 40 ft is low for 80M
- 125 ft is low for 160M

Inverted L

How Much is Height Worth?

- For a 40M horizontal dipole (or Yagi)
-0.9 dB for 5 ft between 30 Ft and 70 Ft below 15°
- 6 dB for $\mathrm{N} / 4$ (33 Ft) to $\mathrm{\lambda} / 2(67 \mathrm{Ft})$
- 2.5 dB for $\lambda / 2(67 \mathrm{Ft})$ to $\lambda(133 \mathrm{Ft})$
- For a 20M Yagi (or horizontal dipole)
- 1 dB for 5 ft between 30 Ft and 60 Ft
- 6 dB for $\mathrm{\lambda} / 2$ (33 Ft) to $\lambda(67 \mathrm{Ft})$
-2 dB at 5° for 67 Ft to 100 Ft

How Much is a Tower Worth?

- For a 40M horizontal dipole (or Yagi)
-0.9 dB for 5 ft between 30 Ft and 70 Ft below 15°
- 6 dB for $\mathrm{N} / 4$ (33 Ft) to $\mathrm{N} / 2(67 \mathrm{Ft}$)
-2.5 dB for $\mathrm{\lambda} / 2(67 \mathrm{Ft})$ to $\lambda(133 \mathrm{Ft})$
- For a 20M Yagi (or horizontal dipole)
- 1 dB for 5 ft between 30 Ft and 60 Ft
- 6 dB for $\mathrm{\lambda} / 2$ (33 Ft) to $\lambda(67 \mathrm{Ft}$)
- 2 dB at 5° for 67 Ft to 100 Ft

How Much is Height Worth?

- For an 80M horizontal dipole (or Yagi) at 15° and below
- 0.9 dB for 10 ft between 40 Ft and 130 Ft
- 3.5 dB for $\lambda / 8(33 \mathrm{Ft})$ to $\mathrm{N} / 4(67 \mathrm{Ft})$
- 6 dB for $\lambda / 4$ (67 Ft) to $\lambda / 2$ (133 Ft)
- On the lower bands, we need less signal to work short distances than long distances
- Antennas cannot be "too high" or too tall for 80 M or 160 M , and few of us can get an antenna too high for 40M

Most Rules Have Exceptions

- Terrain affects an antenna's vertical pattern
- Use HFTA to study your non-flat QTH - ARRL Antenna Book CD
- Verticals are usually best for all distances on 160M

Most Rules Have Exceptions

- Most DX is at low angles - but not always!
- If DX is at high angles, a lower antenna may work better
- We may want to work short distances (a few hundred miles) on 80M and 40M
- Verticals don't work well at high angles (which is why verticals are thought of as weak by ragchewers on 75 and 40M)
- Horizontal antennas will work better

For NVIS

- For a horizontal dipole, $\lambda / 4$ high is near optimum
- 133 ft on 160M
- 67 ft on 80M
- 33 ft on 40M
- Horizontal antenna lower than $\lambda / 4$ are both cloud-warmers and worm warmers
- The only reason to rig a horizontal antenna lower than $\lambda / 4$ is that's the highest you can rig it

Using What We've Learned

- Study your QTH for a while
- Explore all possible skyhooks, their cost
- Try to rig dipoles broadside to $70^{\circ}-90^{\circ} \mathrm{Az}$ - Nulls matter more than peaks - Nulls should avoid population centers - Avoid crossing over a power line
- Be safe - get help from other hams when you need it

Using What We've Learned

- Don't let the "great" be the enemy of the good
- Use this presentation to help you learn what works best for what you can do
- Put something up and get on the air
- Any antenna that's in the air works better than an antenna that's in your basement!
- Think about ways to do it better
- Use my results to predict the relative results of antennas that you can rig

2-El Yagi 40M or Higher Dipoles?

- If I had a choice between 2 elements at 70 feet on a tower, or two dipoles at right angles at 120 ft , which gives me the best bang for the buck?
- 120 ft is 2 dB better on 40 M than 70 ft - 40M Yagi is about 3.5 dB better than a dipole at the same height (assuming compact version)
- The Yagi at 70 ft is 1.5 dB better than dipoles at 120 ft for same feedline length

Cost of the Two Options

- Cost of two high dipoles
- About $\$ 1,800$ if you have the trees ($\$ 1,400$ for climbers, $\$ 400$ for antennas, coax, chokes)
- Cost of Optibeam Moxon on 70 ft tower
- About \$7,500 (\$2,500 for antenna, coax, choke, $\$ 2,000$ for the tower, $\$ 1,000$ for rotor \& cable, $\$ 2,000$ for climber)
- Cost of Yagi 1.5dB advantage about \$5,500
- Cheaper for what you can do yourself

References and More Ideas

- On k9yc.com/publish.htm
- If I Can Put My HF Vertical on my Roof, Should I?
- Antennas For Limited Space (Power Point)
- Getting On 160M From a Small Lot (and Larger Ones Too)
- ARRL Antenna Book

Antenna Planning for Small HF Stations (and even larger ones)

Jim Brown K9YC k9yc@arrl.net http://k9yc.com/publish.htm

